Skip to main content
Log in

The phase evolution, microstructure and microwave dielectric properties of non-stoichiometric Li2(1+x)Mg3TiO6 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An efficient reaction sintering process is engaged to synthesize a series of non-stoichiometric Li2(1+x)Mg3TiO6 (x = 0.01, 0.02, 0.03, 0.04) microwave dielectric ceramics. The single phase of Li2Mg3TiO6 with rock-salt structure is accurately recognized by XRD. Pores left on the surface and inside the sample can be clearly observed from SEM pictures. Excessive Li+ affects the local charge distribution, which influences the response of the dielectric material to the electric field. The pores are not the same medium as the matrix material, and the signal is refracted and scattered when it passes through the pores. Refractions and scatterings increase the signal transmission distance and also increase the transmission loss. These residual Li+ and pores eventually affect the dielectric properties as well. Finally, at x = 0.02 and a sintering temperature of 1260 °C, the ceramic samples showed good dielectric properties: εr = 10.983, Q×f = 107,367 GHz and τf = − 24.2 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The original data required to repeat these results cannot be shared now as it is also portion of relevance ongoing work.

References

  1. C.Z. Yin, Z.Z. Yu, L.L. Shu et al., A low-firing melilite ceramic Ba2CuGe2O7 and compositional modulation on microwave dielectric properties through mg substitution. J. Adv. Ceram. 10, 108–109 (2021)

    Article  CAS  Google Scholar 

  2. W. Wersing, Microwave ceramics for resonators and filters. Curr. Opin. Solid State Mater. Sci. 1, 715–731 (1996)

    Article  CAS  Google Scholar 

  3. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    Article  CAS  Google Scholar 

  4. C.J. Pei, J.J. Tan, Y. Li et al., Effect of Sb-site non-stoichiometry on the structure and microwave dielectric properties of Li3Mg2Sb1–xO6 ceramics. J. Adv. Ceram. 9, 588–594 (2020)

    Article  CAS  Google Scholar 

  5. K. Wakino, Miniaturization techniques of microwave components for mobile communications systems: using low loss dielectrics. IEICE 96, 7–14 (1996)

    Google Scholar 

  6. L.X. Pang, D. Zhou, Modification of NdNbO4 microwave dielectric ceramic by Bi substitutions. J. Am. Ceram. Soc. 102, 2278–2282 (2019)

    Article  CAS  Google Scholar 

  7. K. Liu, L. Shi, X.Y. Wang et al., Li+ enrichment to improve the microwave dielectric properties of Li2ZnTi3O8 ceramics and the relationship between structure and properties. J. Eur. Ceram. Soc. 43, 1483–1491 (2023)

    Article  CAS  Google Scholar 

  8. J.L. Ma, Q. Cheng, Y. Zhang et al., B/C site modified Li3Mg2NbO6 dielectric properties for microwave application. J. Alloys Compd. 905, 164256 (2022)

    Article  CAS  Google Scholar 

  9. Z.Y. Xiu, M.M. Mao, Z.L. Lu et al., High-Q×f value and temperature stable Zn2+-Mn4+ cooperated modified cordierite-based microwave and millimeter-wave dielectric ceramics. J. Eur. Ceram. Soc. 42, 5712–5717 (2022)

    Article  CAS  Google Scholar 

  10. Q.Y. Pang, Y.Y. Li, F. Yang et al., Microstructure and crystal structure dependence of microwave dielectric properties of non-stoichiometric (Sr0.7Ca0.3)z(Zr0.95Ti0.05)O3 perovskite ceramics. Ceram. Int. 49, 8598–8606 (2023)

    Article  CAS  Google Scholar 

  11. Z.F. Fu, P. Liu, J.L. Ma et al., Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). J. Eur. Ceram. Soc. 36, 625–629 (2016)

    Article  CAS  Google Scholar 

  12. P. Zhang, M.M. Yang, H. Xie et al., Sintering behavior and microwave dielectric properties of low-loss Li2Mg3TiO6 ceramics doped with different glass agents. Mater. Chem. Phys. 227, 130–133 (2019)

    Article  CAS  Google Scholar 

  13. X.L. Shi, H.W. Zhang, D.N. Zhang et al., Structure dependence of dielectric characteristics in Li2Mg3Ti1–x(Al0.5Ta0.5)xO6 ceramics. J. Mater. Res. Technol. 11, 1378–1386 (2021)

    Article  CAS  Google Scholar 

  14. J.L. Ma, Z.F. Fu, P. Liu et al., Ultralow-fired Li2Mg3TiO6–Ca0.8Sr0.2TiO3 composite ceramics with temperature stable at microwave frequency. J. Alloys Compd. 709, 299–303 (2017)

    Article  CAS  Google Scholar 

  15. H.C. Xiang, C.C. Li, C.Z. Yin et al., A reduced sintering temperature and improvement in the microwave dielectric properties of Li2Mg3TiO6 through Ge substitution. Ceram. Int. 44, 5817–5821 (2018)

    Article  CAS  Google Scholar 

  16. X.L. Shi, H.W. Zhang, D.N. Zhang, Temperature stable and low loss microwave dielectric ceramics of Li2Mg3–xSrxTiO6. Mater. Sci. Eng. 784, 012009 (2020)

    CAS  Google Scholar 

  17. X.L. Shi, H.W. Zhang, D.N. Zhang et al., Correlation between structure characteristics and dielectric properties of Li2Mg3–xCuxTiO6 ceramics based on complex chemical bond theory. Ceram. Int. 45, 23509–23514 (2019)

    Article  Google Scholar 

  18. P. Zhang, H. Xie, Y.G. Zhao et al., Microwave dielectric properties of low loss Li2(Mg0.95A0.05)3TiO6 (A = Ca2+, Ni2+, Zn2+, Mn2+) ceramics system. J. Alloys Compd. 689, 246–249 (2016)

    Article  CAS  Google Scholar 

  19. H.L. Pan, L. Cheng, H.T. Wu, Relationships between crystal structure and microwave dielectric properties of Li2(Mg1–xCox)3TiO6 (0 ≤ x ≤ 0.4) ceramics. Ceram. Int. 43, 15018–15026 (2017)

    Article  CAS  Google Scholar 

  20. H.L. Pan, Y.X. Mao, Y.K. Yang et al., Crystal structure, Raman spectra, infrared spectra and microwave dielectric properties of Li2Mg3Ti1– x(Mg1/3Ta2/3)xO6 (0 ≤ x ≤ 0.2) solid solution ceramics. Mater. Res. Bull. 105, 296–305 (2018)

    Article  CAS  Google Scholar 

  21. H. Barzegar Bafrooei, E. Taheri Nassaj, T. Ebadzadeh et al., Sintering behavior and microwave dielectric characteristics of ZnTiNb2O8 ceramics achieved by reaction sintering of ZnO–TiO2-Nb2O5 nanosized powders. Ceram. Int. 42, 3296–3303 (2016)

    Article  Google Scholar 

  22. W.J. Lee, T.T. Fang, Densification and microstructural development of the reaction sintering of strontium barium niobate. J. Am. Ceram. Soc. 81, 1019–1024 (2005)

    Article  Google Scholar 

  23. J.D. Guo, W.B. Ma, M.J. Ma et al., Sintering characteristic and microwave dielectric properties of ultra-low loss Li2Mg3TiO6 ceramic prepared by reaction-sintering process. J. Mater. Sci. Mater. Electron. 29, 3640–3647 (2018)

    Article  CAS  Google Scholar 

  24. Z.X. Fang, B. Tang, F. Si et al., Phase evolution, structure and microwave dielectric properties of Li2+xMg3SnO6 (x = 0.00–0.12) ceramics. Ceram. Int. 43, 13645–13652 (2017)

    Article  CAS  Google Scholar 

  25. L. He, H.T. Yu, M.S. Zeng et al., Phase compositions and microwave dielectric properties of MgTiO3-based ceramics obtained by reaction-sintering method. J. Electroceram. 40, 360–364 (2018)

    Article  CAS  Google Scholar 

  26. S.C. Zhou, Q. Wu, H.R. Xu et al., Synthesis and characterization of reaction sintered CaTiO3–LnAlO3 (ln = La, nd) ceramics. Ceram. Int. 47, 32433–32437 (2021)

    Article  CAS  Google Scholar 

  27. L. Huan, Q.C. Sun, W.B. Ma et al., Crystal structure and microwave dielectric properties of (Zn1 –xCox)TiNb2O8 ceramics. J. Alloys Compd. 551, 630–635 (2013)

    Article  CAS  Google Scholar 

  28. S.J. Penn, N.M. Alford, A. Templeton et al., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885–1888 (1997)

    Article  CAS  Google Scholar 

  29. R.D. Shannon, G.R. Rossman, Dielectric constants of silicate garnets and the oxide additivity rule. Am. Mineral. 77, 94–100 (1992)

    CAS  Google Scholar 

  30. Z.X. Wang, Y.F. Guo, J.M. Li, Investigation on phase structure, spectral characteristics, microstructure and microwave dielectric properties of Li2Zn[Ti1–x(Co1/3Nb2/3)x]3O8 (0.0 ≤ x ≤ 0.4) ceramics. Ceram. Int. 49, 15304–15314 (2023)

    Article  CAS  Google Scholar 

  31. W.J. Duan, D.C. Jia, D.L. Cai et al., Effects of pore structures on the dielectric properties of silicon nitride-based ceramics. J. Eur. Ceram. Soc. 40, 6223–6228 (2020)

    Article  CAS  Google Scholar 

  32. J.D. Guo, J.X. Bi, Q.J. Mei et al., Characterization and microwave dielectric properties of wolframite-type MgZrNb2O8 ceramics. J. Alloys Compd. 655, 60–65 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

JM: Funding acquisition, resources, conceptualization, methodology, supervision, Writing—review & editing. YZ: Material preparation, visualization, material testing, formal analysis, Writing—original draft. CC: Material preparation, formal analysis. YS: Material preparation.

Corresponding authors

Correspondence to Jianli Ma or Yu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Zhang, Y., Chen, C. et al. The phase evolution, microstructure and microwave dielectric properties of non-stoichiometric Li2(1+x)Mg3TiO6 ceramics. J Mater Sci: Mater Electron 35, 80 (2024). https://doi.org/10.1007/s10854-023-11797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11797-6

Navigation