Skip to main content
Log in

Thermoelectric performance of Te composited with FeTe2 and co-doped with Sb and Se

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, the element semiconductor Te has been considered as a potential thermoelectric material in the middle temperature region due to its excellent thermoelectric performance and high stability. However, it is necessary to dop with high toxic As element or low toxic Bi or Sb under high pressure conditions to obtain a moderate carrier concentration. In this study, we synthesized Sb-Se doped and FeTe2 composited Te under lower pressure conditions. The results show that the solid solubility of Fe in Te does not exceed 5 at%. After exceeding its solid solubility, Fe is precipitated in the form of FeTe2. The electrical transport properties and thermal conductivity of Te were tuned effectively by FeTe2 composite and Sb doping. The maximum ZT value of the sample with the composition of Fe0.1Te0.9Sb0.003 reaches 0.65 at 607 K, which is much higher than that of the pristine Te. The thermal conductivity was further reduced by Se doping. Thereby, the ZT value of the sample Fe0.1Te0.872Sb0.003Se0.025 was enhanced to 0.76 at 580 K. These results show that combining with doping and composite can improve the thermoelectric properties of Te effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the authors. Research Data are a valuable asset to The Henan Polytechnic University (the University). Definition, responsibility, control, and distribution of Research Data produced during activities supported by the University; supported by external sponsors; or produced with University facilities, resources, or other personnel. This study does not contain any studies with human participants or animals performed by any other authors.

References

  1. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 321, 1457–1461 (2008)

    Article  CAS  Google Scholar 

  2. S. Wongprakarn, S. Pinitsoontorn, S. Tanusilp, K. Kurosaki, Enhancing thermoelectric properties of p-type SiGe alloy through optimization of carrier concentration and processing parameters. Mat. Sci. Semicon. Proc. 88, 239–249 (2018)

    Article  CAS  Google Scholar 

  3. S. Bathula, M. Jayasimhadri, B. Gahtori, N.K. Singh, K. Tyagi, A.K. Srivastava, A. Dhar, The role of nanoscale defect features in enhancing the thermoelectric performance of P-type nanostructured SiGe alloys. Nanoscale. 7, 12474–12483 (2015)

    Article  CAS  Google Scholar 

  4. T.R. Wei, M. Guan, J. Yu, T. Zhu, S. Xun, How to measure thermoelectric properties reliably. Joule. 2, 2183–2188 (2018)

    Article  Google Scholar 

  5. Y.Z. Pei, H. Wang, G.J. Snyder, Band engineering of thermoelectric materials. Adv. Mater. 24, 6125–6135 (2012)

    Article  CAS  Google Scholar 

  6. L.D. Zhao, G.J. Tan, S.Q. Hao, J.Q. He, Y.L. Pei, H. Chi, H. Wang, S.K. Gong, H.B. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science. 351, 141–144 (2016)

    Article  CAS  Google Scholar 

  7. R.S. Zhai, L.P. Hu, H.J. Wu, Z.J. Xu, T.J. Zhu, X.B. Zhao, Enhancing thermoelectric performance of n-type hot deformed bismuth-telluride-based solid solutions by nonstoichiometry-mediated intrinsic point defects. ACS Appl. Mater. Interfaces. 9, 28577–28585 (2017)

    Article  CAS  Google Scholar 

  8. R. Murugasami, P. Vivekanandhan, S. Kumaran, S.R. Kumar, J.T. Tharakan, Synergetic enhancement of thermoelectric and mechanical properties of n-type SiGe-P alloy through solid state synthesis and spark plasma sintering. Mater. Res. Bull. 118, 110483 (2019)

    Article  Google Scholar 

  9. R.S. Jeannine, M.H. Jeremy, J. Song, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21, 4037–4055 (2011)

    Article  Google Scholar 

  10. X. Chen, S. Duan, W.C. Yi, D.J. Singh, J.G. Guo, X.B. Liu, Enhanced thermoelectric performance in black phosphorus nanotubes by band modulation through tailoring nanotube chirality. Small. 16, 2001820 (2020)

    Article  CAS  Google Scholar 

  11. S. Duan, Y.F. Cui, W.C. Yi, X. Chen, B.C. Yang, X.B. Liu, Superior, conversion efficiency achieved in GeP3/h-BN heterostructures as novel flexible and ultralight thermoelectrics. ACS Appl. Mater. Interfaces 13, 18800–18808 (2021)

    Article  CAS  Google Scholar 

  12. Z.C. Wei, C.Y. Wang, J.Y. Zhang, J. Yang, Z.L. Li, Q.D. Zhang, P.F. Luo, W.Q. Zhang, E.K. Liu, J. Luo, Precise regulation of carrier concentration in thermoelectric BiSbTe alloy via magnetic doping. ACS Appl. Mater. Interfaces 12, 20653–20663 (2020)

    Article  CAS  Google Scholar 

  13. T. Xing, Q.F. Song, P.F. Qiu, Q.H. Zhang, M. Gu, X.G. Xia, J.C. Liao, X. Shi, L.D. Chen, High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy Environ. Sci. 14, 995–1003 (2021)

    Article  CAS  Google Scholar 

  14. H. Peng, N. Kioussis, J.G. Snyder, Elemental tellurium as a chiral p-type thermoelectric material. Phys. Rev. B 89, 195206 (2014)

    Article  Google Scholar 

  15. S.Q. Lin, Z.W. Chen, J.W. Shen, B.H. Ge, Y.Z. Pei, Tellurium as a high-performance elemental thermoelectric. Nat. Commun. 7, 10287 (2016)

    Article  CAS  Google Scholar 

  16. S.Q. Lin, W. Li, X.Y. Zhang, J. Li, Z.W. Chen, Y.Z. Pei, Sb induces both doping and precipitation for improving the thermoelectric performance of elemental Te. Inorg. Chem. Front. 4, 1066–1072 (2017)

    Article  CAS  Google Scholar 

  17. M.H. Lee, J.S. Rhyee, M. Vaseem, Y.B. Hahn, S.D. Park, H.J. Kim, S.J. Kim, H.J. Lee, C. Kim, Thermoelectric properties of SrTiO3 nano-particles dispersed indium selenide bulk composites. Appl. Phys. Lett. 102, 223901 (2013)

    Article  Google Scholar 

  18. M.M. Yang, T.C. Su, S. Li, S.S. Li, M.H. Hu, X.B. Liu, Facile synthesis and high thermoelectric performance of tellurium with antimony doping. J. Alloy Compd. 887, 161342 (2021)

    Article  CAS  Google Scholar 

  19. M.M. Yang, T.C. Su, D.W. Zhou, H.Y. Zhu, S.S. Li, M.H. Hu, Q. Hu, H.A. Ma, X.P. Jia, High-pressure synthesis and thermoelectric performance of tellurium doped with bismuth. J. Mater. Sci. 52, 10526–10532 (2017)

    Article  CAS  Google Scholar 

  20. T.E. Chan, J.M. LeBeau, R. Venkatasubramanian, P. Thomas, J. Stuart, C.C. Koch, Carrier concentration modulation by hot pressing pressure in n-type nanostructured Bi(Se)Te alloy. Appl. Phys. Lett. 103, 144106 (2013)

    Article  Google Scholar 

  21. H.Y. Zhu, T.C. Su, H.T. Li, C.Y. Pu, D.W. Zhou, P.W. Zhu, X. Wang, High pressure synthesis, structure and thermoelectric properties of BiCuChO (Ch = S, Se, Te). J. Eur. Ceram. Soc. 37, 1541–1546 (2017)

    Article  CAS  Google Scholar 

  22. W.H. Shin, J.W. Roh, B. Ryu, H.J. Chang, H.S. Kim, S. Lee, W.S. Seo, K. Ahn, Enhancing thermoelectric performance of bismuth antimony telluride via synergistic combination of multiscale structuring and band alignment by FeTe2 incorporation. ACS Appl. Mater. Interfaces 10, 3689–3698 (2018)

    Article  CAS  Google Scholar 

  23. J.U. Rahman, W.H. Nam, Y.J. Jung, J.H. Won, J.M. Oh, N.V. Du, G. Rahman, V.M.G. Suarez, R. He, K. Nielsch, J.Y. Cho, W.S. Seo, J.W. Roh, S.I. Kim, S. Lee, K.H. Lee, H.S. Kim, W.H. Shin, Realizing high thermoelectric performance in n-type Se-free Bi2Te3 materials by spontaneous incorporation of FeTe2 nanoinclusions. Energy Environ. Mater. (2023). https://doi.org/10.1002/eem2.12663

    Article  Google Scholar 

  24. Q. Hao, D. Xu, N. Lu, H. Zhao, High-throughput ZT predictions of nanoporous bulk materials as next-generation thermoelectric materials: a material genome approach. Phys. Rev. B 93, 205206 (2016)

    Article  Google Scholar 

  25. S. Ahmad, R. Basu, P. Sarkar, A. Singh, A. Bohra, S. Bhattacharya, R. Bhatt, K.N. Meshram, S. Samanta, P. Bhatt, M. Navaneethan, Y. Hayakawa, A.K. Debnath, S.K. Gupta, D.K. Aswal, K.P. Muthe, S.C. Gadkari, Enhanced thermoelectric figure-of-merit of p-type SiGe through TiO2 nanoinclusions and modulation doping of boron. Materialia. 4, 147–156 (2018)

    Article  CAS  Google Scholar 

  26. G. Jivtesh, B. Nicola, K. Boris, M. Nicola, Role of disorder and anharmonicity in the thermal conductivity of silicon–germanium alloys: a first-principles study. Phys. Rev. Lett. 106, 045901 (2011)

    Article  Google Scholar 

  27. S.J. Park, H. Kwak, H.S. Kim, J. Bang, H. Park, O. Park, T.W. Kim, S.I. Kim, Evolution of electrical transport properties in FeTe2–CoTe2 solid solution system for optimum thermoelectric performance. J. Alloys Compd. 960, 170850 (2023)

    Article  CAS  Google Scholar 

  28. M. Yang, X. Li, S. Duan, X. Zhang, H. Sun, X. Chen, T. Su, L. Gu, X. Liu, Superior thermoelectric performance of black phosphorus in elemental tellurium. Adv. Energy Mater. 12, 2203014 (2022)

    Article  CAS  Google Scholar 

  29. D. Boor, J.E. Muller, Data analysis for Seebeck coefficient measurements. Rev. Sci. Instrum. 84, 065102 (2013)

    Article  Google Scholar 

Download references

Funding

This work is supported by the Guangxi Natural Science Foundation (Grant Nos: AD20297014, 2021GXNSFAA220064), the Natural Science Foundation of China ( Grant No: 52062031).

Author information

Authors and Affiliations

Authors

Contributions

Weikang Lu and Xubiao Zhou: investigation, data curation, writing- original draft preparation. Shangsheng Li: supervision, resources, methodology. Hongyu Zhu: data curation, funding acquisition. Meihua Hu: data curation. Bingke Qin: data curation, funding acquisition. Taichao Su: data curation, writing- reviewing and editing, methodology, funding acquisition.

Corresponding author

Correspondence to Shangsheng Li.

Ethics declarations

Conflict of interest

We know of no conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome. As corresponding author, I confirm that the manuscript has been read and approved for submission by all the named authors.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 380.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Li, S., Zhou, X. et al. Thermoelectric performance of Te composited with FeTe2 and co-doped with Sb and Se. J Mater Sci: Mater Electron 35, 54 (2024). https://doi.org/10.1007/s10854-023-11796-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11796-7

Navigation