Skip to main content
Log in

Ag and Sn capping layers for stabilizing Cu solar cell contacts against oxidation in air: effects of method and solution of deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports the effects of Ag and Sn capping layers and their method of deposition by electroless and electrochemistry on the oxidation stability in ambient air of the electrodeposited Cu film used as front side contacts in the Si-solar cells. The effect of the deposition solution of Ag and Sn capping layers on the Cu oxidation stability was also investigated by using two different solutions for the deposition of the Ag capping layer, one acidic solution (AgNO3/HF) and the other alkaline solution (AgNO3/(NH4)2SO4/NH4OH), whereas the Sn capping layer was deposited using an acidic solution (SnCl2/HCl). Optical microscopy, SEM, XRD, XPS and sheet resistance measurements have been employed to characterize the prepared samples and examine their oxidation stability. It has been shown that the Ag and Sn capping layers improved the oxidation stability of the Cu film as well as its adhesion with the Si substrate. However, the electrodeposited Ag and Sn layers induced formation of whiskers, which have a detrimental effect on the reliability of the Si-solar cells. This study revealed that the Ag layer deposited by electroless using an acidic solution (AgNO3/HF) can be considered a promising candidate for the use as a capping layer for the Cu contacts in Si-solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

My manuscript and associated personal data.

References

  1. B. Phua, X. Shen, P.C. Hsiao, C. Kong, A. Stokes, A. Lennon, Sol. Energy Mater. Sol. Cells. 215, 43 (2020)

    Google Scholar 

  2. A. Rehman, S.H. Lee, Materials. (Basel) 7, 1318 (2014)

    Google Scholar 

  3. X. Shen, P.C. Hsiao, B. Phua, A. Stokes, V.R. Gonçales, A. Lennon, Sol. Energy Mater. Sol. Cells. 205, 110285 (2020)

    CAS  Google Scholar 

  4. G. Zhao, W. Wang, T.S. Bae, S.G. Lee, C.W. Mun, S. Lee, H. Yu, G.H. Lee, M. Song, J. Yun, Nat. Commun. 6, 1 (2015)

    Google Scholar 

  5. N.A. Luechinger, E.K. Athanassiou, W.J. Stark, Nanotechnology (2008). https://doi.org/10.1088/0957-4484/19/44/445201

    Article  Google Scholar 

  6. Y.S. Park, C.Y. An, P.K. Kannan, N. Seo, K. Zhuo, T.K. Yoo, C.H. Chung, Appl. Surf. Sci. 389, 865 (2016)

    CAS  Google Scholar 

  7. J.J. Kim, Y.S. Kim, S.K. Kim, Electrochem. Solid-State Lett. (2003). https://doi.org/10.1149/1.1534732

    Article  Google Scholar 

  8. W. Cao, W. Li, R. Yin, W. Zhou, Colloids Surf. Physicochem. Eng. Asp. 453, 37 (2014)

    CAS  Google Scholar 

  9. X. Xu, X. Luo, H. Zhuang, W. Li, B. Zhang, Mater. Lett. 57, 3987 (2003)

    CAS  Google Scholar 

  10. O. Güler, T. Varol, Ü. Alver, A. Çanakçı, J. Alloys Compd. 782, 679 (2019)

    Google Scholar 

  11. M.C. Kang, Y.J. Kim, J.J. Kim, Electrochem. Solid-State Lett. 12, 340 (2009)

    Google Scholar 

  12. Y. Liang, S.C. Oh, X. Wang, H. Glicksman, D. Liu, S. Ehrman, RSC Adv. 7, 23468 (2017)

    CAS  Google Scholar 

  13. M. Uysal, T. Cetinkaya, H. Gul, M. Kartal, H. Algul, M. Tokur, A. Alp, H. Akbulut, Acta Phys. Pol. A 127, 1106 (2015)

    Google Scholar 

  14. N. Van Phuong, M.S. Park, C.D. Yim, B.S. You, S. Moon, Corros. Sci. 136, 201 (2018)

    Google Scholar 

  15. H. Lee, S.H. Ahn, Bull. Korean Chem. Soc. 38, 1085 (2017)

    CAS  Google Scholar 

  16. T.C. Dao, T.Q.N. Luong, RSC Adv. 10, 40940 (2020)

    CAS  Google Scholar 

  17. J. Aromaa, M. Kekkonen, M. Mousapour, A. Jokilaakso, M. Lundström, Corros. Mater. Degrad. 2, 625 (2021)

    Google Scholar 

  18. T.G. Kim, H.J. Park, K. Woo, S. Jeong, Y. Choi, S.Y. Lee, ACS Appl. Mater. Interfaces. 10, 1059 (2018)

    CAS  Google Scholar 

  19. J. Peng, B. Chen, Z. Wang, J. Guo, B. Wu, S. Hao, Q. Zhang, L. Gu, Q. Zhou, Z. Liu, S. Hong, S. You, A. Fu, Z. Shi, H. Xie, D. Cao, C.J. Lin, G. Fu, L.S. Zheng, Y. Jiang, N. Zheng, Nature. 586, 390 (2020)

    CAS  Google Scholar 

  20. K. Lahtonen, M. Lampimäki, M. Hirsimäki, M. Valden, J. Chem. Phys. (2008). https://doi.org/10.1063/1.2980347

    Article  Google Scholar 

  21. B. Illés, T. Hurtony, O. Krammer, B. Medgyes, K. Dušek, D. Bušek, Materials (Basel) 12, 1 (2019)

    Google Scholar 

  22. K.S. Kim, J.M. Yang, J.P. Ahn, Appl. Surf. Sci. 256, 7166 (2010)

    CAS  Google Scholar 

  23. B. Horváth, Microelectron. Reliab. 53, 1009 (2013)

    Google Scholar 

  24. P.R. Brejna, P.R. Griffiths, Y. Jyisy, Appl. Spectrosc. 63, 396 (2009)

    CAS  Google Scholar 

  25. M. Moradi, B. Gerami Shirazi, A. Sadeghi, S. Seidi, Int. J. Light Mater. Manuf. 5, 1 (2022)

    CAS  Google Scholar 

  26. N. Okamoto, F. Wang, T. Watanabe, Mater. Trans. 45, 3330 (2004)

    CAS  Google Scholar 

  27. P. Scherrer, Nachr. Ges Wiss Göttingen. 26, 98 (1918)

    Google Scholar 

  28. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)

    CAS  Google Scholar 

  29. P.R. Brejna, P.R. Griffiths, Appl. Spectrosc. 64, 493 (2010)

    CAS  Google Scholar 

  30. T. Qiu, X.L. Wu, G.J. Wan, Y.F. Mei, G.G. Siu, P.K. Chu, J. Cryst. Growth. 284, 470 (2005)

    CAS  Google Scholar 

  31. R. Djouani, X. Qian, M. Of, E. Of, and N. International, (2022)

  32. V. Uvarov, I. Popov, Mater. Charac. 85, 111 (2013)

    CAS  Google Scholar 

  33. M.E. Gulduren, A. Taser, H. Guney, Gazi Univ. J. Sci. 35, 1116 (2022)

    Google Scholar 

  34. N.X. Zhou, P.S. da Silva, A.V. de Castro Braga, A.R. Pimenta, L.F. de Senna, Mater. Res. 25, 1 (2022)

    Google Scholar 

  35. Z. Xu, S. Kumar, J.P. Jung, K.K. Kim, Mater. Trans. 53, 946 (2012)

    CAS  Google Scholar 

  36. H. Hiraba, H. Koizumi, A. Kodaira, K. Takehana, T. Yoneyama, H. Matsumura, Materials (Basel) 14, 1 (2021)

    Google Scholar 

  37. M.C. Biesinger, Surf. Interface Anal. 49, 1325 (2017)

    CAS  Google Scholar 

  38. X. Wang, B. Zhang, W. Zhang, M. Yu, L. Cui, X. Cao, J. Liu, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  39. R.H. Guo, S.Q. Jiang, C.W.M. Yuen, M.C.F. Ng, J. Mater. Sci. Mater. Electron. 20, 33 (2009)

    CAS  Google Scholar 

  40. J. Kowalska, C.S. Gopinath, Acta Phys. Pol. A 125, 1065 (2014)

    Google Scholar 

  41. W. Phae-Ngam, T. Rattana, S. Kamoldilok, K. Kohmun, H. Nakajima, N. Triamnak, C. Chananonnawathorn, W. Hincheeranan, M. Horprathum, Coatings  (2023). https://doi.org/10.3390/coatings13010043

    Article  Google Scholar 

  42. N.J. Firet, M.A. Blommaert, T. Burdyny, A. Venugopal, D. Bohra, A. Longo, W.A. Smith, J. Mater. Chem. A 7, 2597 (2019)

    CAS  Google Scholar 

  43. C. Longo, P.T.A. Sumodjo, F. Sanz, J. Electrochem. Soc. 144, 1659 (1997)

    CAS  Google Scholar 

  44. J. Ni, X. Zhu, Y. Yuan, Z. Wang, Y. Li, L. Ma, A. Dai, M. Li, T. Wu, R. Shahbazian-Yassar, J. Lu, L. Li, Nat. Commun. 11, 4 (2020)

    Google Scholar 

  45. E. Uzunlar, Z. Wilson, P.A. Kohl, J. Electrochem. Soc. 160, D3237 (2013)

    CAS  Google Scholar 

  46. L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maragno, E. Tondello, Surf. Sci. Spectra. 10, 170 (2003)

    CAS  Google Scholar 

  47. H. Jeong, H. Ryu, J.S. Bae, J. Ind. Eng. Chem. 104, 416 (2021)

    CAS  Google Scholar 

  48. J. Song, J. Li, J. Xu, H. Zeng, Nano Lett. 14, 6298 (2014)

    CAS  Google Scholar 

  49. Y. Ahn, Y. Jeong, D. Lee, Y. Lee, ACS Nano. 9, 3125 (2015)

    CAS  Google Scholar 

  50. Q. Xiang, R. Navik, H. Tan, Y. Zhao, J Alloy Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.165265

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial supports from the Directorate-General for Scientific Research and Technological Development (DGRSDT), Algeria and Research Centre in Semiconductors Technology for Energetics (CRTSE), Algeria.

Author information

Authors and Affiliations

Authors

Contributions

OD.: Conceptualization, Methodology, Investigation, Visualization, Data curation and Writing—original draft. AM: Supervision. SC: Preparation of deposition solutions. CY and MB: Electrochemical deposition assistance and some discussions. SM: POCl3 diffusion method and some discussions.

Corresponding author

Correspondence to Oussama Djema.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

The authors consent to participate.

Consent for publication

The author’s consent for publication.

Research involving human participants and animals

Not applicable for that section.

Informed consent

Not applicable for that section.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djema, O., Moussi, A., Chaouchi, S. et al. Ag and Sn capping layers for stabilizing Cu solar cell contacts against oxidation in air: effects of method and solution of deposition. J Mater Sci: Mater Electron 35, 91 (2024). https://doi.org/10.1007/s10854-023-11794-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11794-9

Navigation