Skip to main content
Log in

Influence of sputtered gallium oxide as buffer or high-resistive layer on performance of Cu(In,Ga)Se2-based solar cells

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Oxides could be candidates for buffer, passivation, or high-resistive (HR) layers in Cu(In,Ga)Se2 (CIGS) thin-film solar cells. From an industrial point of view, a high-rate and dry deposition method like sputtering would be the most favorable technique. This study presents results with the wide-bandgap material gallium oxide (Ga2O3) deposited by magnetron sputtering applied as a substitution for the traditional CdS buffer or the intrinsic ZnO (i-ZnO) HR layer. With state-of-the-art CIGS absorber layers, subject to a RbF post-deposition treatment, an ammonia rinsing of the CIGS surface before sputtering of X-ray amorphous Ga2O3 has mostly a positive impact on device performance reaching efficiencies up to 14%. An efficiency of 20.2% with anti-reflective coating was achieved with Ga2O3 applied as HR layer as substitution for i-ZnO in combination with a solution-grown CdS buffer and ZnO:Al as front contact. This result is comparable to the efficiency of 20.4% for the CIGS/CdS/i-ZnO/ZnO:Al reference cell.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Higashiwaki, S. Fujita, Gallium Oxide (Springer International Publisher, Cham, 2020)

    Book  Google Scholar 

  2. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Stat. Sol. (RRL) 10, 583–586 (2016)

    Article  CAS  Google Scholar 

  3. S. Ishizuka, N. Taguchi, J. Nishinaga, Y. Kamikawa, S. Tanaka, H. Shibata, Group III elemental composition dependence of RbF postdeposition treatment effects on Cu(In,Ga)Se2 thin films and solar cells. J. Phys. Chem. C 122, 3809–3817 (2018)

    Article  CAS  Google Scholar 

  4. R. Carron, S. Nishiwaki, T. Feurer, R. Hertwig, E. Avancini, J. Löckinger, S.-C. Yang, S. Buecheler, A.N. Tiwari, Advanced alkali treatments for high-efficiency Cu(In,Ga)Se2 solar cells on flexible substrates. Adv. Energy Mater. 9, 1900408 (2019)

    Article  Google Scholar 

  5. D. Hariskos, R. Menner, P. Jackson, S. Paetel, W. Witte, W. Wischmann, M. Powalla, L. Bürkert, T. Kolb, M. Oertel, B. Dimmler, B. Fuchs, New reaction kinetics for a high-rate chemical bath deposition of the Zn(S,O) buffer layer for Cu(In,Ga)Se2-based solar cells. Prog. Photovolt. Res. Appl. 20, 534–542 (2012)

    Article  CAS  Google Scholar 

  6. K. Kikuchi, S. Imura, K. Miyakawa, M. Kubota, E. Ohta, Electrical and optical properties of Ga2O3/CuGaSe2 heterojunction photoconductors. Thin Solid Films 550, 635–637 (2014)

    Article  CAS  Google Scholar 

  7. M.D. Heinemann, M.F.A.M. van Hest, M. Contreras, J.D. Perkins, A. Zakutayev, C.A. Kaufmann, T. Unold, D.S. Ginley, J.J. Berry, Amorphous oxides as electron transport layers in Cu(In,Ga)Se2 superstrate devices. Phys. Stat. Sol. A 214, 1600870 (2017)

    Google Scholar 

  8. S. Garud, N. Gampa, T.G. Allen, R. Kotipalli, D. Flandre, M. Batuk, J. Hadermann, M. Meuris, J. Poortmans, A. Smets, B. Vermang, Surface passivation of CIGS solar cells using gallium oxide. Phys. Stat. Sol. A 215, 1700826 (2018)

    Google Scholar 

  9. T. Koida, Y. Kamikawa-Shimizu, A. Yamada, H. Shibata, S. Niki, Cu(In,Ga)Se2 solar cells with amorphous oxide semiconducting buffer layers. IEEE J. Photovolt. 5, 956–961 (2015)

    Article  Google Scholar 

  10. H.A. Yetkin, T. Kodalle, T. Bertram, A. Vellanueva-Tovar, R. Klenk, B. Szyszka, R. Schlatmann, C.A. Kaufmann, in Proc. 47th IEEE Photovoltaic Specialists Conference (PVSC) 2020, Comparison of the Thermal Stability of Differently Buffered CIGSe Solar Cells. pp. 1192–1197 (2020)

  11. W. Witte, S. Paetel, R. Menner, A. Bauer, D. Hariskos, The application of sputtered gallium oxide as buffer for Cu(In,Ga)Se2 solar cells. Phys. Stat. Sol. (RRL) 15, 2100180 (2021)

    Article  CAS  Google Scholar 

  12. A. Chirila, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat. Commun. 12, 1107–1111 (2013)

    CAS  Google Scholar 

  13. S. Siebentritt, E. Avancini, M. Bär, J. Bombsch, E. Bourgeois, S. Buecheler, R. Carron, C. Castro, S. Duguay, R. Félix, E. Handick, D. Hariskos, V. Havu, P. Jackson, H.-P. Komsa, T. Kunze, M. Malitckaya, R. Menozzi, M. Nesladek, N. Nicoara, M. Puska, M. Raghuwanshi, P. Pareige, S. Sadewasser, G. Sozzi, A.N. Tiwari, S. Ueda, A. Vilalta-Clemente, T.P. Weiss, F. Werner, R.G. Wilks, W. Witte, M.H. Wolter, Heavy alkali treatment of Cu(In,Ga)Se2 solar cells: surface versus bulk effects. Adv. Energy Mater. 10, 1903752 (2020)

    Article  CAS  Google Scholar 

  14. W. Witte, D. Abou-Ras, D. Hariskos, Chemical bath deposition of Zn(O,S) and CdS buffers: influence of Cu(In,Ga)Se2 grain orientation. Appl. Phys. Lett. 102, 051607 (2013)

    Article  Google Scholar 

  15. J. Löckinger, S. Nishiwaki, T.P. Weiss, B. Bissig, Y.E. Romanyuk, S. Buecheler, A.N. Tiwari, TiO2 as intermediate buffer layer in Cu(In,Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 174, 397–404 (2018)

    Article  Google Scholar 

  16. J. Löckinger, S. Nishiwaki, C. Andres, R. Erni, M.D. Rossell, Y.E. Romanyuk, S. Buecheler, A.N. Tiwari, ALD-ZnxTiyO as window layer in Cu(In,Ga)Se2 solar cells. ACS Appl. Mater. Interfaces 10, 43603–43609 (2018)

    Article  Google Scholar 

  17. B.K. Meyer, A. Polity, B. Farangis, Y. He, D. Hasselkamp, T. Krämer, C. Wang, Structural properties and bandgap bowing of ZnO1−xSx thin films deposited by reactive sputtering. Appl. Phys. Lett. 85, 4929–4931 (2004)

    Article  CAS  Google Scholar 

  18. T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, Y. Hamakawa, Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering. Thin Solid Films 372, 173–176 (2000)

    Article  CAS  Google Scholar 

  19. 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490–00 by00 from the American Society for Testing and Materials (ASTM). NREL website, https://www.nrel.gov/grid/solar-resource/spectra-astm-e490.html. Accessed 19 Oct 2021

  20. Reference Air Mass 1.5 Spectra from the American Society for Testing and Materials (ASTM). NREL website, https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html. Accessed 19 Oct 2021

  21. W. Witte, R. Carron, D. Hariskos, F. Fu, R. Menner, S. Buecheler, IZO or IOH window layers combined with Zn(O,S) and CdS buffers for Cu(In,Ga)Se2 solar cells. Phys. Stat. Sol. A 214, 1700688 (2017)

    Google Scholar 

  22. W. Witte, W. Hempel, S. Paetel, R. Menner, D. Hariskos, Effects of sputtered InxSy buffer on CIGS with RbF post-deposition treatment. ECS J. Solid State Sci. Technol. 10, 055006 (2021)

    Article  CAS  Google Scholar 

  23. F. Larsson, O. Donzel-Gargand, J. Keller, M. Edoff, T. Törndahl, Atomic layer deposition of Zn(O,S) buffer layers for Cu(In,Ga)Se2 solar cells with KF post-deposition treatment. Sol. Energy Mater. Sol. Cells 183, 8–15 (2018)

    Article  CAS  Google Scholar 

  24. R. Hertwig, S. Nishiwaki, M. Ochoa, S.-C. Yang, T. Feurer, E. Gilshtein, A.N. Tiwari, R. Carron, ALD-ZnMgO and absorber surface modifications to substitute CdS buffer layers in co-evaporated CIGSe solar cells. EPJ Photovolt. 11, 12 (2020)

    Article  CAS  Google Scholar 

  25. D. Hariskos, S. Spiering, M. Powalla, Buffer layers in Cu(In,Ga)Se2 solar cells and modules. Thin Solid Films 480–481, 99–109 (2005)

    Article  Google Scholar 

  26. N. Naghavi, D. Abou-Ras, N. Allsop, N. Barreau, S. Bücheler, A. Ennaoui, C.-H. Fischer, C. Guillen, D. Hariskos, J. Herrero, R. Klenk, K. Kushiya, D. Lincot, R. Menner, T. Nakada, C. Platzer-Björkman, S. Spiering, A.N. Tiwari, T. Törndahl, Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Prog. Photovolt. Res. Appl. 18, 411–433 (2010)

    Article  CAS  Google Scholar 

  27. D. Hariskos, B. Fuchs, R. Menner, N. Naghavi, C. Hubert, D. Lincot, M. Powalla, The Zn(S,O,OH)/ZnMgO buffer in thin-film Cu(In,Ga)(Se,S)2-based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In,Ga)Se2 solar cells. Prog. Photovolt. Res. Appl. 17, 479–488 (2009)

    Article  CAS  Google Scholar 

  28. T. Kato, A. Handa, T. Yagioka, T. Matsuura, K. Yamamoto, S. Higashi, J.-L. Wu, K.F. Tai, H. Hiroi, T. Yoshiyama, T. Sakai, H. Sugimoto, Enhanced efficiency of Cd-free Cu(In,Ga)(Se,S)2 minimodules via (Zn,Mg)O second buffer layer and alkali metal post-treatment. IEEE J. Photovolt. 7, 1773–1780 (2017)

    Article  Google Scholar 

  29. J. Chantana, T. Kato, H. Sugimoto, T. Minemoto, Thin-film Cu(In,Ga)(Se,S)2-based solar cell with (Cd,Zn)S buffer layer and Zn1-xMgxO window layer. Prog. Photovolt. Res. Appl. 25, 431–440 (2017)

    Article  CAS  Google Scholar 

  30. K.F. Tai, R. Kamada, T. Yagioka, T. Kato, H. Sugimoto, From 20.9 to 22.3% Cu(In,Ga)(S,Se)2 solar cell: reduced recombination rate at the heterojunction and the depletion region due to K-treatment. Jpn. J. Appl. Phys. 56, 08MC03 (2017)

    Article  Google Scholar 

  31. M. Powalla, P. Jackson, W. Witte, D. Hariskos, S. Paetel, C. Tschamber, W. Wischmann, High-efficiency Cu(In,Ga)Se2 cells and modules. Sol. Energy Mater. Sol. Cells 119, 51–58 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the CIGS team at ZSW for solar cell preparation. This project has received funding from the German Federal Ministry for Economic Affairs and Energy (BMWi) under contract number 03EE1059A within the EFFCIS-II project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Witte.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witte, W., Hempel, W., Paetel, S. et al. Influence of sputtered gallium oxide as buffer or high-resistive layer on performance of Cu(In,Ga)Se2-based solar cells. Journal of Materials Research 37, 1825–1834 (2022). https://doi.org/10.1557/s43578-022-00608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00608-z

Keywords

Navigation