Skip to main content
Log in

Structural, optical and gas sensing properties of Zn-doped CuO nanostructure thin films for benzene gas sensing applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of Zn-doping on structural and gas sensing properties of CuO thin film prepared by a spray pyrolysis technique were systematically studied. The prepared films were characterized through X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), and UV–visible (UV–Vis) spectroscopy. The XRD pattern reveals that synthesized films have polycrystalline, possessing a monoclinic structure with (002) and (111) preferred orientation. The average crystallite size was decreases from 12 to 9 nm with Zn-doping. The FE-SEM images indicate that the prepared thin films were crack-free exhibiting agglomerated spherical structure. The stoichiometric chemical composition of the films was confirmed by EDS analysis, and it revealed the presence of Cu, Zn, and O elements with the desired atomic weight percentage of the films. UV–Vis–NIR spectroscopy showed that films are highly transparent in the NIR region. The optical bandgap of undoped CuO thin films increased with Zn concentration. The response of the CuO to 20 ppm benzene had been enhanced from 48 to 70 by 3% Zn doping. The response and recovery behavior was discussed and the mechanism of the outstanding benzene sensing performance was explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting this study’s findings are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable.

References

  1. M. Mascini, S. Gaggiotti, F. Della Pelle, C. Di Natale, S. Qakala, E. Iwuoha, P. Pittia, D. Compagnone, Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs). Front. Chem. 6, 105 (2018). https://doi.org/10.3389/fchem.2018.00105

    Article  CAS  Google Scholar 

  2. Y. Bao, P. Xu, S. Cai, H. Yu, X. Li, Detection of volatile-organic-compounds (VOCs) in solution using cantilever-based gas sensors. Talanta 182, 148–155 (2018). https://doi.org/10.1016/j.talanta.2018.01.086

    Article  CAS  Google Scholar 

  3. M.T. Smith, Advances in understanding benzene health effects and susceptibility. Annu. Rev. Public Health 31(1), 133–148 (2010). https://doi.org/10.1146/annurev.publhealth.012809.103646

    Article  Google Scholar 

  4. A. Mirzaei, J.-H. Kim, H.W. Kim, S.S. Kim, Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: a review. J. Mater. Chem. C (2018). https://doi.org/10.1039/C8TC00245B

    Article  Google Scholar 

  5. H.F. Frasch, A.M. Barbero, In vitro human epidermal permeation of nicotine from electronic cigarette refill liquids and implications for dermal exposure assessment. J. Expos. Sci. Environ. Epidemiol. 27, 618–624 (2017). https://doi.org/10.1038/jes.2016.68

    Article  CAS  Google Scholar 

  6. M.-T. Ke, M.-T. Lee, C.-Y. Lee, L.-M. Fu, A MEMS-based benzene gas sensor with a self-heating WO3 sensing layer. Sensors 9(4), 2895–2906 (2009). https://doi.org/10.3390/s90402895

    Article  CAS  Google Scholar 

  7. M. Punginsang, A. Wisitsora-at, A. Tuantranont, S. Phanichphant, C. Liewhiran, Effects of cobalt doping on nitric oxide, acetone and ethanol sensing performances of FSP-made SnO2 nanoparticles. Sens. Actuators B Chem. 210, 589–601 (2015). https://doi.org/10.1016/j.snb.2015.01.028

    Article  CAS  Google Scholar 

  8. Z. Li, S. Yan, Z. Wu, H. Li, J. Wang, W. Shen, Z. Wang, Y.Q. Fu, Hydrogen gas sensor based on mesoporous In2O3 with fast response/recovery and ppb level detection limit. Int. J. Hydrogen Energy 43, 22746–22755 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.101

    Article  CAS  Google Scholar 

  9. S.J. Kim, S.J. Choi, J.-S. Jang, N.H. Kim, M. Hakim, H.L. Tuller, I.D. Kim, Mesoporous WO3 nanofibers with protein templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10, 5891–5899 (2016). https://doi.org/10.1021/acsnano.6b01196

    Article  CAS  Google Scholar 

  10. S.M. Majhi, G.K. Naik, H.J. Lee, H.G. Song, C.R. Lee, I.H. Lee, Y.T. Yu, Au@ NiO coreshell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sensors Actuators. B Chem. 268, 223–231 (2018). https://doi.org/10.1016/j.snb.2018.04.119

    Article  CAS  Google Scholar 

  11. S.P. Bharath, K.V. Bangera, Fast detection and discriminative analysis of volatile organic compounds using Al-doped ZnO thin films. Appl. Phys. A 127, 699 (2021). https://doi.org/10.1007/s00339-021-04771-8

    Article  CAS  Google Scholar 

  12. J.M. Xu, J.P. Cheng, The advances of Co3O4 as gas sensing materials: a review. J. Alloys Compd. 686, 753–768 (2016). https://doi.org/10.1016/j.jallcom.2016.06.086

    Article  CAS  Google Scholar 

  13. J. Kneer, S. Knobelspies, B. Bierer, J. Wöllenstein, S. Palzer, New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens. Actuators B Chem. 222, 625–631 (2016). https://doi.org/10.1016/j.snb.2015.08.071

    Article  CAS  Google Scholar 

  14. L.D. Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J.A. Aguiar, Y. Majima, Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films 520, 6368–6374 (2012). https://doi.org/10.1016/j.tsf.2012.06.0043

    Article  CAS  Google Scholar 

  15. C. RaviDhas, D. Alexander, A. Jennifer Christy, K. Jeyadheepan, A. Moses Ezhil Raj, C. Sanjeevi Raja, Preparation and characterization of CuO thin films prepared by spray pyrolysis technique for ethanol gas sensing application. Asian J. Appl. Sci. 7(8), 671–684 (2014). https://doi.org/10.3923/ajaps.2014

    Article  Google Scholar 

  16. V. Cretu, V. Postica, A.K. Mishra, M. Hoppe, I. Tiginyanu, Y.K. Mishra, L. Chow, N.H. De Leeuw, R. Adelung, O. Lupan, Synthesis, chareterization and DFT studies of Zn doped CuO nanocrystals for gas sensing applications. J. Mater. Chem. A (2016). https://doi.org/10.1039/c6ta01355d

    Article  Google Scholar 

  17. S. Xia, H. Zhu, H. Cai, J. Zhang, J. Yu, Z. Tang, Hydrothermally synthesized CuO based volatile organic compound gas sensor. RSC Adv. 4(101), 57975–57982 (2014). https://doi.org/10.1039/c4ra09083g

    Article  CAS  Google Scholar 

  18. O. Mnethu, S.S. Nkosi, I. Kortidis, D.E. Motaung, R.E. Kroon, H.C. Swart, T. Moyo, Ultra-sensitive and selective p-xylene gas sensor at low operating temperature utilizing Zn doped CuO nanoplatelets: insignificant vestiges of oxygen vacancies. J. Colloid Interface Sci. 576, 364–375 (2020). https://doi.org/10.1016/j.jcis.2020.05.030

    Article  CAS  Google Scholar 

  19. U. Yildiz, N. Kati, B. Gul, Characterization of CuO doped CdO nanomaterials synthesized by sol-gel spin coating and hydrothermal method. Mater. Sci. Eng. B 290, 116306 (2023). https://doi.org/10.1016/j.mseb.2023.116306

    Article  CAS  Google Scholar 

  20. R.S. Shinde, S.D. Khairnar, M.R. Patil et al., Synthesis and characterization of ZnO/CuO nanocomposites as an effective photocatalyst and gas sensor for environmental remediation. J. Inorg. Organomet. Polym. 32, 1045–1066 (2022). https://doi.org/10.1007/s10904-021-02178-9

    Article  CAS  Google Scholar 

  21. U. Yıldız, N. Kati, B. Gul, Examination of structural and electrical properties of CuO-doped CdO nanocomposites produced by the hydrothermal method. Cryst. Res. Technol. 57(10), 2200093 (2022). https://doi.org/10.1002/crat.202200093

    Article  CAS  Google Scholar 

  22. K. Abdelkarem, R. Saad, A.M. Ahmed et al., Efficient room temperature carbon dioxide gas sensor based on barium doped CuO thin films. J. Mater. Sci. 58, 11568–11584 (2023). https://doi.org/10.1007/s10853-023-08687-x

    Article  CAS  Google Scholar 

  23. R.D. Prabu, S. Valanarasu, V. Ganesh, M. Shkir, S. Alfaify, A. Kathalingam, S.R. Srikumar, R. Chandramohan, An effect of temperature on structural, optical, photoluminescence and electrical properties of copper oxide thin films deposited by nebulizer spray pyrolysis technique. Mater. Sci. Semicond. Proc. 74, 129–135 (2018). https://doi.org/10.1016/j.mssp.2017.10.023

    Article  CAS  Google Scholar 

  24. M. Nesa, M. Sharmin, K.S. Hossain, A.H. Bhuiyan, Structural, morphological, optical and electrical properties of spray deposited zinc doped copper oxide thin films. J. Mater. Sci. Mater. Electron. 28, 12523–12534 (2017). https://doi.org/10.1007/s10854-017-7075-3

    Article  CAS  Google Scholar 

  25. S.I. Kuryshchuk, I.G. Orletskii, O.V. Shyrokov, D. Myroniuk, S. Mykhailo, Optical and electrical properties of CuO thin films by spray pyrolysis method. Acta Phys. Pol. 142, 625–628 (2022). https://doi.org/10.12693/APhysPolA.142.625

    Article  CAS  Google Scholar 

  26. B.J. Hansen, N. Kouklin, G. Lu, I.K. Lin, J. Chen, X. Zhang, Transport, analyte detection, and opto-electronic response of p-type CuO nanowires. J. Phys. Chem. C 114, 2440–2447 (2010). https://doi.org/10.1021/jp908850j

    Article  CAS  Google Scholar 

  27. H. Kim, C. Jin, S. Park, S. Kim, C. Lee, H2S gas sensing properties of bare and Pd functionalized CuO nanorods. Sens. Actuators B Chem 161, 594–599 (2012). https://doi.org/10.1016/j.snb.2011.11.006

    Article  CAS  Google Scholar 

  28. M. Nesa, M. Sharmin, A.H. Bhuniyan, Role of Zn dopants on the surface morphology, chemical structure and DC electrical transport properties of nanostructured p-type CuO thin films. Mater. Sci. Semicond. Process. 122, 105479 (2021). https://doi.org/10.1016/j.mssp.2020.105479

    Article  CAS  Google Scholar 

  29. K.R. Nemade, S.A. Waghuley, LPG sensing performance of CuO–Ag2O bimetallic oxide nanoparticals. St Petersburg Polytech. Univ. J. Phys. Math. (2015). https://doi.org/10.1016/j.spjpm.2015.07.006

    Article  Google Scholar 

  30. C.P. Goyal, D. Goyal, S.K. Rajan, N.S. Ramgir, Y. Shimura, M. Navaneethan, Y. Hayakawa, C. Muthamizhchelvan, H. Ikeda, S. Ponnusamy, Effect of Zn doping in CuO Octahedral crystals towards structural, optical, and gas sensing properties. Crystals 10, 188 (2020). https://doi.org/10.3390/cryst10030188

    Article  CAS  Google Scholar 

  31. I. Singh, G. Kaur, R.K. Bedi, CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique. Appl. Surf. Sci. 257, 9546–9554 (2011). https://doi.org/10.1016/j.apsusc.2011.06.061

    Article  CAS  Google Scholar 

  32. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918). https://doi.org/10.4236/opj.2019.911016

    Article  CAS  Google Scholar 

  33. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111–112 (2013). https://doi.org/10.1016/j.matchar.2006.09.002

    Article  CAS  Google Scholar 

  34. J.I. Langford, A.J.C. Wilson, Scherrer after Sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  35. R.O. Yathisha, Y. ArthobaNayaka, P. Manjunatha, H.T. Purushothama, M.M. Vinay, K.V. Basavarajappa, Study on the effect of Zn2+ doping on optical and electrical properties of CuO nanoparticles. Phys. E Low-Dimens. Syst. Nanostruct. 108, 257–268 (2018). https://doi.org/10.1016/j.physe.2018.12.021

    Article  CAS  Google Scholar 

  36. M. Nesa, M. Sharmin, K.S. Hossain, A.H. Bhuiyan, Structural, morphological, optical and electrical properties of spray deposited zinc doped copper oxide thin films. J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7075-3

    Article  Google Scholar 

  37. D. Wang, Y. Wang, T. Jiang, H. Jia, M. Yu, The preparation of M (M: Mn2+, Cd2+, Zn2+)-doped CuO nanostructures via the hydrothermal method and their properties. J. Mater. Sci. Mater. Electron. 27(2), 2138–2145 (2016). https://doi.org/10.1007/s10854-015-4003-2

    Article  CAS  Google Scholar 

  38. I. Singh, R.K. Bedi, Studies and correlation among the structural, electrical and gas response properties of aerosol spray deposited self-assembled nano crystalline CuO. Appl. Surf. Sci. 257, 7592–7599 (2011). https://doi.org/10.1016/j.apsusc.2011.03.133

    Article  CAS  Google Scholar 

  39. S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel combustion route. Mater. Sci. Eng. B 177, 428–435 (2012). https://doi.org/10.1016/j.mseb.2012.01.022

    Article  CAS  Google Scholar 

  40. A. Bedia, F.Z. Bedia, M. Aillerie, N. Maloufi, B. Benyoucef, Morphological and optical properties of ZnO thin films prepared by spray pyrolysis on glass substrates at various temperatures for integration in solar cell. Energy Procedia 74, 529–538 (2015). https://doi.org/10.1016/j.egypro.2015.07.740

    Article  CAS  Google Scholar 

  41. C. Belkhaoui, N. Mzabi, H. Smaoui, Investigations on structural, optical and dielectric properties of Mn doped ZnO nanoparticles synthesized by co-precipitation method. Mater. Res. Bull. 111, 70–79 (2019). https://doi.org/10.1016/j.materresbull.2018.11.006

    Article  CAS  Google Scholar 

  42. S. Wang, P. Li, H. Liu, J. Li, Y. Wei, The structure and optical properties of ZnO nanocrystals dependence on Co-doping levels. J. Alloys Compd. 505, 362–366 (2010). https://doi.org/10.1016/j.jallcom.2010.05.183

    Article  CAS  Google Scholar 

  43. E. Gurbuz, B. Sahin, Zn-doping to improve the hydration level sensing performance of CuO films. Appl. Phys. A 124(12), 795 (2018). https://doi.org/10.1007/s00339-018-2223-z

    Article  CAS  Google Scholar 

  44. M.R. Das, P. Mitra, Influence of nickel incorporation on structural, optical and electrical characteristics of SILAR synthesized CuO thin films. J Sol-Gel Sci. Technol. 87, 59 (2018). https://doi.org/10.1007/s10971-018-4711-1

    Article  CAS  Google Scholar 

  45. M.M. Arafat, B. Dinan, S.A. Akbar, A.S.M.A. Haseeb, Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12, 7207–7258 (2012). https://doi.org/10.3390/s120607207

    Article  CAS  Google Scholar 

  46. B. Saruhan, R.L. Fomekong, S. Nahirniak, Review: influences of semiconductor metal oxide properties on gas sensing characteristics. Front. Sens. 2, 657931 (2021). https://doi.org/10.3389/fsens.2021.657931

    Article  Google Scholar 

  47. H.-B. Na, X.-F. Zhang, M. Zhang, Z.-P. Deng, X.-L. Cheng, L.H. Huo, S. Gao, A fast response/recovery ppb-level H2S gas sensor based on porous CuO/ZnO heterostructural tubule via confined effect of absorbent cotton. Sensors and Actuators B: Chemical 297, 126816 (2019). https://doi.org/10.1016/j.snb.2019.126816

    Article  CAS  Google Scholar 

  48. A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42, 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145

    Article  CAS  Google Scholar 

  49. S.G. Onkar, S.B. Nagdeote, A.S. Wadatkar, P.B. Kharat, Gas sensing behavior of ZnO thick film sensor towards H2S, NH3, LPG and CO2. J. Phys. Conf. Ser. 1644, 012060 (2020). https://doi.org/10.1088/1742-6596/1644/1/012060

    Article  CAS  Google Scholar 

  50. R. Xing, K. Sheng, L. Xu, W. Liu, J. Song, H. Song, Three-dimensional In2O3–CuO inverse opals: synthesis and improved gas sensing properties towards acetone. RSC Adv. 6, 57389–57395 (2016). https://doi.org/10.1039/c6ra07483a

    Article  CAS  Google Scholar 

  51. L. Hou, C. Zhang, L. Li, C. Du, X. Li, X.F. Kang, W. Chen, CO gas sensors based on p-type CuO nanotubes and CuO nano cubes: Morphology and surface structure effects on the sensing performance. Talanta 188, 41–49 (2018). https://doi.org/10.1016/j.talanta.2018.05.059

    Article  CAS  Google Scholar 

  52. O. Mnethu, S.S. Nkosi, I. Kortidis, D.E. Motaung, R.E. Kroon, Ultra-sensitive and selective p-xylene gas sensor at low operating temperature utilizing Zn doped CuO nanoplatelets: insignificant vestiges of oxygen vacancies. J. Colloid Interface Sci. 576, 364–375 (2020). https://doi.org/10.1016/j.jcis.2020.05.030

    Article  CAS  Google Scholar 

  53. A. Ghosh, A. Maity, R. Banerjee, S.B. Majumder, Volatile organic compound sensing using copper oxide thin films: addressing the cross-sensitivity issue. J. Alloys Compd. 692, 108–118 (2017). https://doi.org/10.1016/j.jallcom.2016.09.001

    Article  CAS  Google Scholar 

  54. A. Rydosz, A. Szkudlarek, Gas-sensing performance of M-doped CuO based thin films working at different temperatures upon exposure to propane. Sensors 15, 20069–20085 (2015). https://doi.org/10.3390/s150820069

    Article  CAS  Google Scholar 

  55. G.K. Kurugundla, G. Umadevi, S. Parne, N. Pothukanuri, Zinc Oxide based gas sensors and their derivatives: a critical review. J. Mater. Chem. C 11, 3906–3925 (2023). https://doi.org/10.1039/D2TC04690C

    Article  Google Scholar 

  56. K. Gopi Krishna, S. Parne, N. Pothukanuri, V. Kathirvelu, S. Gandi, D. Joshi, Nanostructured metal oxide semiconductor-based gas sensors: a comprehensive review. Sens. Actuators A Phys 341, 113578 (2022). https://doi.org/10.1016/j.sna.2022.113578

    Article  CAS  Google Scholar 

  57. Z. Ma, Yu. Tongwei Yuan, L.W. Fan, Z. Duan, Du. Wei, D. Zhang, Xu. Jiaqiang, A benzene vapor sensor based on metal–organic framework-modified quartz Crystal microbalance. Sens. Actuators B Chem. 311, 127365 (2020). https://doi.org/10.1016/j.snb.2019.127365

    Article  CAS  Google Scholar 

  58. T. Nandy, R. Coutu, C. Ababei, Carbon monoxide sensing technologies for next generation cyber-physical systems. Sensors 18, 3443 (2018). https://doi.org/10.3390/s18103443

    Article  CAS  Google Scholar 

  59. Q. Tang, X.B. Hu, M. He, L.L. Xie, Z.G. Zhu, J.Q. Wu, Effect of platinum doping on the morphology and sensing performance for CuO-based gas sensor. Appl. Sci. 8, 1091 (2018). https://doi.org/10.3390/app8071091

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SLB—Synthesis, characterization, analysis, formal writing; LHK—characterization, analysis; GU—analysis, review; VDM—supervision of scientific, editing; final writing; BND—final drafting.

Corresponding author

Correspondence to V. D. Mote.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare relevant to this article’s content. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhise, S.L., Kathwate, L.H., Umadevi, G. et al. Structural, optical and gas sensing properties of Zn-doped CuO nanostructure thin films for benzene gas sensing applications. J Mater Sci: Mater Electron 35, 66 (2024). https://doi.org/10.1007/s10854-023-11780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11780-1

Navigation