Skip to main content
Log in

The structural and electrical properties of basaltic glasses modified by ZnO

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to investigate the structural and electrical properties of basaltic glass modified by ZnO, ZnO-modified basaltic glasses were prepared by the conventional melt-cooling method. The relationship between glass structure and electrical properties was investigated using XRD, FT-IR, Raman, DSC, dielectric properties tester and volume resistance tester. The results show that when ZnO doping is lower than 6 wt%, it does not lead to basalt glass crystallization. The ZnO doping shows roughly a linear relationship with the volume resistivity, but the trend is not obvious. The optimum doping of ZnO was 4 wt%, at this doping level, the glass network was the most connected with the lowest values of dielectric constant (6.5) and dielectric loss (0.005). This finding provides theoretical support for the replacement of E-glass fibers by basalt fibers in terms of dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available upon reasonable request from the authors.

References

  1. J. Tan, R. Wang, Research on evaluation and influencing factors of regional ecological efficiency from the perspective of carbon neutrality. J. Environ. Manag. 294, 113030 (2021). https://doi.org/10.1016/j.jenvman.2021.113030

    Article  Google Scholar 

  2. L. Chen, G. Msigwa, M. Yang, A.I. Osman, S. Fawzy, D.W. Rooney, P.S. Yap, Strategies to achieve a carbon neutral society: a review. Environ. Chem. Lett. 20(4), 2277–2310 (2022). https://doi.org/10.1007/s10311-022-01435-8

    Article  CAS  Google Scholar 

  3. C. Liu, X. Tong, C. Yang, L. Jiang, Y. Li, L. Zhang, B. Ding, Z. Liu, H. Huang, H.J.S. Li, Preparation and dielectric properties of the amorphous basaltic glass. Silicon 14(7), 3623–3628 (2022). https://doi.org/10.1007/s12633-021-01131-2

    Article  CAS  Google Scholar 

  4. H. Li, Z. Yuan, J. Zhao, S. Miao, Y. Li, C. Liu, L. Jiang, C. Yang, Effects of TiO2 doped to basalt on producing continuous fiber and their electrical properties. J. Non Cryst. Solids 599, 121986 (2023). https://doi.org/10.1016/j.jnoncrysol.2022.121986

    Article  CAS  Google Scholar 

  5. D. Kim, H.J. Kim, S.I. Yoo, Effect of ZnO/K2O ratio on the crystallization sequence and microstructure of lithium disilicate glass-ceramics. J. Eur. Ceram. Soc. 39(15), 5077–5085 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.05.032

    Article  CAS  Google Scholar 

  6. S.M. Salem, E.M. Antar, A.G. Mostafa, S.A. El-badry, Compositional dependence of the structural and dielectric properties of Li2O–GeO2–ZnO–Bi2O3–Fe2O3 glasses. J. Mater. Sci. 46(5), 1295–1304 (2011). https://doi.org/10.1007/s10853-010-4915-4

    Article  CAS  Google Scholar 

  7. M. Szumera, I. Wacławska, J. Sułowska, Influence of CuO and ZnO addition on the multicomponent phosphate glasses: spectroscopic studies. J. Mol. Struct. 1114, 78–83 (2016). https://doi.org/10.1016/j.molstruc.2016.02.026

    Article  CAS  Google Scholar 

  8. H.A. Lutpi, H. Mohamad, T.K. Abdullah, H. Ismail, Effect of ZnO on the structural, physio-mechanical properties and thermal shock resistance of Li2O–Al2O3–SiO2 glass-ceramics. Ceram. Int. 48(6), 7677–7686 (2021). https://doi.org/10.1016/j.ceramint.2021.11.315

    Article  CAS  Google Scholar 

  9. S.S. Danewalia, S. Khan, S. Dhillon, N. Bansal, G. Sharma, K. Singh, Effect of transition metals (MO–TiO2, MnO2, Fe2O3, and ZnO) on crystallization and electrical conductivity of SiO2–CaO–Na2O–P2O5-based glass-ceramics. Ionics 26, 2959–2967 (2020). https://doi.org/10.1007/s11581-019-03311-y

    Article  CAS  Google Scholar 

  10. H.A. Abo-Mosallam, H. Darwish, S.M. Salman, Crystallization characteristic and properties of some zinc containing soda lime silicate glasses. J. Mater. Sci. 21, 889–896 (2010). https://doi.org/10.1007/s10854-009-0012-3

    Article  CAS  Google Scholar 

  11. Y. He, Z. Fu, S. Behavior, Phase composition and microwave dielectric characteristics of Mg4Nb2O9 ceramics doped with ZnO–B2O3–SiO2 glass. Integr. Ferroelectr. 221(1), 161–167 (2021). https://doi.org/10.1080/10584587.2021.1965841

    Article  CAS  Google Scholar 

  12. H. Gui, C. Li, C. Lin, Q. Zhang, Z. Luo, L.H.J.L.T.L.A, Lu, Glass forming, crystallization, and physical properties of MgO–Al2O3–SiO2–B2O3 glass-ceramics modified by ZnO replacing MgO. J. Eur. Ceram. Soc. 39(4), 1397–1410 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.10.002

    Article  CAS  Google Scholar 

  13. Y. Yue, X. Zhang, Y. Xu, S. Huang, P.J.M.L. Chen, Structural, dielectric and melting properties of aluminosilicate glasses based on blast furnace slag for printed circuit board applications. Mater. Lett. 136, 356–358 (2014). https://doi.org/10.1016/j.matlet.2014.08.090

    Article  CAS  Google Scholar 

  14. G. Khater, B. Nabawy, J. Kang, M.J.S. Mahmoud, Dielectric properties of basaltic glass and glass-ceramics: modeling and applications as insulators and semiconductors. Silicon 11(2), 579–592 (2018). https://doi.org/10.1007/s12633-018-9963-4

    Article  CAS  Google Scholar 

  15. C. Yang, T. Li, X. Wang, X. Deng, Z. Yuan, L. Jiang, Y. Han, L. Jia, C. Liu, H. Li, Effect of addition of SiO2 and Al2O3 on the dielectric properties of basalt glasses. J. Text. Inst. (2023). https://doi.org/10.1080/00405000.2023.2271202

    Article  Google Scholar 

  16. M. Chen, J. Liu, Z. Wu, Effect of Fe2O3 concentration on the properties of basalt glasses. J. Nat. Fibers 19(2), 575–585 (2022). https://doi.org/10.1080/15440478.2020.1758277

    Article  CAS  Google Scholar 

  17. Z. Yuan, C. Yang, C. Liu, L. Jiang, H. Li, Y. J.T.J.o.T, Effect of Ca3(PO4)2 doped to basalt on the structure, electrical characteristics and spinnability. J. Text. Inst. (2023). https://doi.org/10.1080/00405000.2023.2223353

    Article  Google Scholar 

  18. R. Limbach, S. Karlsson, G. Scannell, R. Mathew, M. Edén, L. Wondraczek, The effect of TiO2 on the structure of Na2O–CaO–SiO2 glasses and its implications for thermal and mechanical properties. J. Non Cryst. Solids 471, 6–18 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.04.013

    Article  CAS  Google Scholar 

  19. D.U. Tulyaganov, S. Agathopoulos, J.M. Ventura, M.A. Karakassides, O. Fabrichnaya, J.M.F. Ferreira, Synthesis of glass-ceramics in the CaO–MgO–SiO2 system with B2O3, P2O5, Na2O and CaF2 additives. J. Eur. Ceram. Soc. 26(8), 1463–1471 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.02.009

    Article  CAS  Google Scholar 

  20. P. González, J. Serra, S. Liste, S. Chiussi, B. León, M. Pérez-Amor, Raman spectroscopic study of bioactive silica based glasses. J. Non Cryst. Solids 320(1–3), 92–99 (2003). https://doi.org/10.1016/S0022-3093(03)00013-9

    Article  CAS  Google Scholar 

  21. T. Liang, J. Zhang, H. Chen, L. Gao, V.G.J.C.I. Harris, Dielectric and thermodynamic properties of Ba-doped photoetchable glasses for three dimensional RF microsystem packaging. Ceram. Int. 47(10), 14226–14232 (2021). https://doi.org/10.1016/j.ceramint.2021.01.288

    Article  CAS  Google Scholar 

  22. A.K. Yadav, P. Singh, A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 5(83), 67583–67609 (2015). https://doi.org/10.1039/C5RA13043C

    Article  CAS  Google Scholar 

  23. Y. Mohassab, H.Y. Sohn, Analysis of Slag Chemistry by FTIR-RAS and Raman Spectroscopy: Effect of Water Vapor Content in H2–H2O–CO–CO2 mixtures relevant to a Novel Green Ironmaking Technology. Steel Res. Int. 86(7), 740–752 (2015). https://doi.org/10.1002/srin.201400186

    Article  CAS  Google Scholar 

  24. W. Guo, Z. Wang, Z. Zhao, Z. An, W. Wang, Effect of CeO2 on the viscosity and structure of high-temperature melt of the CaO–SiO2(-Al2O3)–CeO2 system. J. Non Cryst. Solids 540, 120085 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120085

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Hebei Provincial Science and Technology Department (206Z1501G), the Chinese Academy of Sciences Foundation for Poverty Alleviation (81832390), the academician workstation construction grant from Hebei Dipaogu Incubator Co., Ltd (204790416 H), the science and technology project of Hebei Education Department (BJK2023040) and the Hebei University of Geosciences Doctoral Research Start-up Fund (BQ2019008).

Author information

Authors and Affiliations

Authors

Contributions

LZ wrote the first draft of the manuscript and completed all the experimental work with ZY, JZ collected and analyzed the data, YL and LJ revised the manuscript, CY and CL conceived and designed the work, and HL approved the final version. All authors expressed their views on the writing of the manuscript and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongchao Li.

Ethics declarations

Competing interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Yuan, Z., Zhao, J. et al. The structural and electrical properties of basaltic glasses modified by ZnO. J Mater Sci: Mater Electron 34, 2305 (2023). https://doi.org/10.1007/s10854-023-11765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11765-0

Navigation