Skip to main content
Log in

Preparation and application of electrical conductive composites with skin temperature-triggered attachable and on-demand detachable adhesion

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electronic skin, represented by stretchable flexible strain sensors, is widely used to detect the movement of human joints, etc., because of its comfortable attachment to the skin. The strain sensors with adhesive properties are essential in terms of conformal attachment to skin and transmitting signals precisely. However, it is of great importance to develop flexible sensors with reversible attachment and detachment in practical applications. In this work, a novel skin temperature-triggering adhesive conductive composite was obtained by copolymerization of acrylate monomers stearyl acrylate (SA) and tetradecyl acrylate (TA) in situ with vinylsilane grafted carbon nanotubes (VCNTs) and carbon black (CB). The obtained composite has the characteristics of adjustable stiffness and adhesion by changing temperature due to the crystallizable alkyl side chain of SA and TA. Specifically, the composite exhibits adhesion at skin temperature and loses its adhesive properties at lower temperature due to the amorphous-to-semicrystalline phase transition of copolymer matrix. While the coordination of zero-dimensional (0D) CB and one-dimensional (1D) VCNTs imparts the composite good electrical conductivity of 3.6 × 106 Ω cm. The composite-based strain sensor displays stable monitor results of human motion. Therefore, this work might enrich the preparation strategies for flexible sensors in wearable electronic devices and electronic skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data used to support the findings of this study are included within the article.

References

  1. S. Li, R. Xu, J. Wang, Y. Yang, Q. Fu, C. Pan, J. Colloid Interface Sci. 617, 372 (2022). https://doi.org/10.1016/j.jcis.2022.03.020

    Article  CAS  Google Scholar 

  2. M. Lahelin, A. Vesterinen, A. Nykänen, J. Ruokolainen, J. Seppälä, Eur. Polymer J. 47, 873 (2011). https://doi.org/10.1016/j.eurpolymj.2011.02.020

    Article  CAS  Google Scholar 

  3. S.M. Miriyala, Y.S. Kim, L. Liu, J.C. Grunlan, Macromol. Chem. Phys. 209, 2399 (2008). https://doi.org/10.1002/macp.200800384

    Article  CAS  Google Scholar 

  4. Y. Wang, J. Zhang, Y. Wang, X. Guo, Y. Liang, J. Mater. Sci.: Mater. Electron. 31, 21557 (2020). https://doi.org/10.1007/s10854-020-04669-w

    Article  CAS  Google Scholar 

  5. A. Li, C. Zhang, Y.F. Zhang, Polymers. 9, 437 (2017). https://doi.org/10.3390/polym9090437

    Article  CAS  Google Scholar 

  6. S. Chen, Y. Yu, R. Cao, H. Liu, X. Zhang, Polymers. 11, 1113 (2019). https://doi.org/10.3390/polym11071113

    Article  CAS  Google Scholar 

  7. Y. Ye, F. Jiang, Nano Energy. 99, 107374 (2022). https://doi.org/10.1016/j.nanoen.2022.107374

    Article  CAS  Google Scholar 

  8. S. Azadi, S. Peng, S.A. Moshizi, M. Asadnia, J. Xu, I. Park, C.H. Wang, S. Wu, Adv. Mater. Technol. 5, 2000426 (2020). https://doi.org/10.1002/admt.202000426

    Article  CAS  Google Scholar 

  9. C. Mendes-Felipe, J. Oliveira, P. Costa, L. Ruiz-Rubio, A. Iregui, A. González, J.L. Vilas, S. Lanceros-Mendez, Eur. Polymer J. 120, 109226 (2019). https://doi.org/10.1016/j.eurpolymj.2019.109226

    Article  CAS  Google Scholar 

  10. C. Zhang, S. Song, Q. Li, J. Wang, Z. Liu, S. Zhang, Y. Zhang, J. Mater. Chem. C 9, 15337 (2021). https://doi.org/10.1039/d1tc03523a

    Article  CAS  Google Scholar 

  11. Y. He, Y. Ming, W. Li, Y. Li, M. Wu, J. Song, X. Li, H. Liu, Sensors. 18, 1338 (2018). https://doi.org/10.3390/s18051338

    Article  CAS  Google Scholar 

  12. G.-M. Go, S. Park, M. Lim, B. Jang, J.Y. Park, H.-B. Cho, Y.-H. Choa, J. Mater. Sci. 57, 18037 (2022). https://doi.org/10.1007/s10853-022-07317-2

    Article  CAS  Google Scholar 

  13. G. Yan, D. Han, W. Li, J. Qiu, C. Jiang, L. Li, C. Wang, J. Appl. Polym. Sci. 139, 52321 (2022). https://doi.org/10.1002/app.52321

    Article  CAS  Google Scholar 

  14. Z. Zhang, D. Xiang, Y. Wu, J. Zhang, Y. Li, M. Wang, Z. Li, C. Zhao, H. Li, P. Wang, Y. Li, Appl. Compos. Mater. 29, 1235 (2022). https://doi.org/10.1007/s10443-022-10017-4

    Article  Google Scholar 

  15. L.N.M. Dinh, B.N. Tran, V. Agarwal, P.B. Zetterlund, ACS Appl. Polym. Mater. 4, 1867 (2022). https://doi.org/10.1021/acsapm.1c01738

    Article  CAS  Google Scholar 

  16. S. Zarei Darani, R. Naghdabadi, Polym. Compos. 42, 4707 (2021). https://doi.org/10.1002/pc.26180

    Article  CAS  Google Scholar 

  17. S. Khan, W. Dang, L. Lorenzelli, R. Dahiya, IEEE Trans. Semicond. Manuf. 28, 486 (2015). https://doi.org/10.1109/tsm.2015.2468053

    Article  Google Scholar 

  18. Y. Zhu, S. Jiang, Y. Xiao, J. Yu, L. Sun, W. Zhang, J. Mater. Sci.: Mater. Electron. 29, 19830 (2018). https://doi.org/10.1007/s10854-018-0111-0

    Article  CAS  Google Scholar 

  19. E. Su, G. Bayazit, S. Ide, O. Okay, Eur. Polymer J. 168, 111098 (2022). https://doi.org/10.1016/j.eurpolymj.2022.111098

    Article  CAS  Google Scholar 

  20. S. Song, C. Zhang, W. Li, J. Wang, P. Rao, J. Wang, T. Li, Y. Zhang, Nano Energy. 100, 107513 (2022). https://doi.org/10.1016/j.nanoen.2022.107513

    Article  CAS  Google Scholar 

  21. X. Shi, P. Wu, Small. 17, 2101220 (2021). https://doi.org/10.1002/smll.202101220

    Article  CAS  Google Scholar 

  22. S. Chun, D.W. Kim, S. Baik, H.J. Lee, J.H. Lee, S.H. Bhang, C. Pang, Adv. Funct. Mater. 28, 1805224 (2018). https://doi.org/10.1002/adfm.201805224

    Article  CAS  Google Scholar 

  23. H.N. Insol Hwang, M. Kim, S.-H. Seong, M. Lee, H. Kang, W.G. Yi, M.K. Bae, Kwak, H.E. Jeong, Adv Healthc. Mater. 7, 1800275 (2018). https://doi.org/10.1002/adhm.201800275

    Article  CAS  Google Scholar 

  24. S. Sun, Z. Wang, Y. Wang, Polymers. 15, 764 (2023). https://doi.org/10.3390/polym15030764

    Article  CAS  Google Scholar 

  25. V.V. Tran, S. Lee, D. Lee, T.H. Le, Polymers. 14, 3730 (2022). https://doi.org/10.3390/polym14183730

    Article  CAS  Google Scholar 

  26. B. Pang, L. Dong, S. Ma, H. Dong, L. Yu, RSC Adv. 6, 41287 (2016). https://doi.org/10.1039/c6ra02854c

    Article  CAS  Google Scholar 

  27. B. Wang, Q. Zheng, M. Li, S. Wang, S. Xiao, X. Li, H. Liu, Express Polym. Lett. 16, 524 (2022). https://doi.org/10.3144/expresspolymlett.2022.39

    Article  CAS  Google Scholar 

  28. M. Gao, H. Wu, R. Plamthottam, Z. Xie, Y. Liu, J. Hu, S. Wu, L. Wu, X. He, Q. Pei, Matter. 4, 1962 (2021). https://doi.org/10.1016/j.matt.2021.03.003

    Article  CAS  Google Scholar 

  29. J.-W. Zha, D.-H. Wu, Y. Yang, Y.-H. Wu, R.K.Y. Li, Z.-M. Dang, RSC Adv. 7, 11338 (2017). https://doi.org/10.1039/c6ra27367j

    Article  CAS  Google Scholar 

  30. Z. Wang, M.C. Liu, Z.Y. Chang, H.B. Li, RSC Adv. 11, 25158 (2021). https://doi.org/10.1039/d1ra04296c

    Article  CAS  Google Scholar 

  31. M. Kwiatkowska, R. Pełech, A. Jędrzejewska, D. Moszyński, I. Pełech, Polymers. 12, 308 (2020). https://doi.org/10.3390/polym12020308

    Article  CAS  Google Scholar 

  32. A. Amiri, M. Maghrebi, M. Baniadam, S. Zeinali Heris, Appl. Surf. Sci. 257, 10261 (2011). https://doi.org/10.1016/j.apsusc.2011.07.039

    Article  CAS  Google Scholar 

  33. F. Altaf, R. Gill, R. Batool, R. Zohaib Ur, H. Majeed, G. Abbas, K. Jacob, J. Environ. Chem. Eng. 8, 104118 (2020). https://doi.org/10.1016/j.jece.2020.104118

    Article  CAS  Google Scholar 

  34. Z. Ren, W. Hu, C. Liu, S. Li, X. Niu, Q. Pei, Macromolecules. 49, 134 (2015). https://doi.org/10.1021/acs.macromol.5b02382

    Article  CAS  Google Scholar 

  35. K.S. Gautam, A. Dhinojwala, Phys. Rev. Lett. 88, 145501 (2002). https://doi.org/10.1103/PhysRevLett.88.145501

    Article  CAS  Google Scholar 

  36. X. Zhang, X. Chao, L. Lou, J. Fan, Q. Chen, B. Li, L. Ye, D. Shou, Compos. Commun. 23, 100595 (2021). https://doi.org/10.1016/j.coco.2020.100595

    Article  Google Scholar 

  37. A. Kotopouleas, M. Nikolopoulou, Build. Environ. 99, 184 (2016). https://doi.org/10.1016/j.buildenv.2016.01.021

    Article  Google Scholar 

  38. S. Subhan, T. Anoma, S. Arfandee, Polym. Test. 85, 106417 (2020). https://doi.org/10.1016/j.polymertesting.2020.106417

    Article  CAS  Google Scholar 

  39. M. Doumeng, L. Makhlouf, F. Berthet, O. Marsan, K. Delbé, J. Denape, F. Chabert, Polym. Test. 93, 106878 (2021). https://doi.org/10.1016/j.polymertesting.2020.106878

    Article  CAS  Google Scholar 

  40. M.A. Morsi, S.A. El-Khodary, A. Rajeh, Phys. B: Condens. Matter. 539, 88 (2018). https://doi.org/10.1016/j.physb.2018.04.009

    Article  CAS  Google Scholar 

  41. S. Li, H. Wang, H. Mao, J. Li, H. Shi, ACS Appl. Mater. Interfaces. 11, 14150 (2019). https://doi.org/10.1021/acsami.9b02387

    Article  CAS  Google Scholar 

  42. S. Fan, C. Gao, C. Duan, S. Zhang, P. Zhang, L. Yu, Z. Zhang, Compos. Sci. Technol. 219, 109224 (2022). https://doi.org/10.1016/j.compscitech.2021.109224

    Article  CAS  Google Scholar 

  43. A.M. Díez-Pascual, B. Ashrafi, M. Naffakh, J.M. González-Domínguez, A. Johnston, B. Simard, M.T. Martínez, M.A. Gómez-Fatou, Carbon. 49, 2817 (2011). https://doi.org/10.1016/j.carbon.2011.03.011

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation (Grant No: 52003151).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were analyzed by YC. The first draft was written by YC, and all authors co-authored previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Weizhen Li or Wenjun Gan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Tian, M., Song, S. et al. Preparation and application of electrical conductive composites with skin temperature-triggered attachable and on-demand detachable adhesion. J Mater Sci: Mater Electron 34, 2315 (2023). https://doi.org/10.1007/s10854-023-11739-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11739-2

Navigation