Skip to main content
Log in

Synthesis and study of microstructural, optical and electrical properties of Na-doped Cu2ZnSnS4 thin films via thermal evaporation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Non-doped and sodium-doped Cu2ZnSnS4 (CZTS) thin films deposited on heated glass substrates at 100 °C have been successfully fabricated by the thermal evaporation technique, after what all layers were annealed under sulfur atmosphere at 400 °C. The structural properties of all layers were analyzed using X-ray diffraction and Raman spectroscopy methods. These analysis reveals a polycrystalline with kesterite structure and preferential orientation along the (112) plane for all samples. The surface morphology of all samples was investigated using atomic force microscopy (AFM). The obtained topographies show an improvement of the crystalline quality of post-sulfurized Na-doped CZTS films. Further, the optical measurement recorded by UV–Vis spectroscopy reveals that the direct band gap energy of post-sulfurized Na-doped CZTS films were in the range of 1.56 eV and 1.61 eV. Electrically, all films show p-type electrical conductivity, measured by the hot probe method. In addition, Hall Effect measurements show that Na-doped CZTS thin films exhibit lower resistivity and mobility, as well as higher carrier concentration, than Non-doped films. We can conclude that doping CZTS with Na makes it a better photovoltaic material, and that it is suitable as an absorber layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article and will be available upon request from the corresponding author.

References

  1. S. Mohammadnejad, Z. Mollaaghaei Bahnamiri, S. Enayati Maklavani, Enhancement of the performance of kesterite thin-film solar cells using dual absorber and ZnMgO buffer layers. Superlattices Microstruct. 144, 106587 (2020). https://doi.org/10.1016/j.spmi.2020.106587

    Article  CAS  Google Scholar 

  2. S. Rondiya, A. Rokade, A. Jadhavar, S. Nair, M. Chaudhari, R. Kulkarni, A. Mayabadi, A. Funde, H. Pathan, S. Jadkar, Effect of calcination temperature on the properties of CZTS absorber layer prepared by RF sputtering for solar cell applications. Mater. Renew. Sustain. Energy (2017). https://doi.org/10.1007/s40243-017-0092-6

    Article  Google Scholar 

  3. M. Ravindiran, C. Praveenkumar, Status review and the future prospects of CZTS based solar cell—a novel approach on the device structure and material modeling for CZTS based photovoltaic device. Renew. Sustain. Energy Rev. 94, 317–329 (2018). https://doi.org/10.1016/j.rser.2018.06.008

    Article  CAS  Google Scholar 

  4. Y.M. Hunge, A.A. Yadav, S. Liu, V.L. Mathe, Sonochemical synthesis of CZTS photocatalyst for photocatalytic degradation of phthalic acid. Ultrason. Sonochem. 56, 284–289 (2019). https://doi.org/10.1016/j.ultsonch.2019.04.003

    Article  CAS  Google Scholar 

  5. M. Cuneyt Haciismailoglu, M. Ahmetoglu, M. Haciismailoglu, M. Alper, T. Batmaz, Electrical and optical properties of Schottky diodes fabricated by electrodeposition of Ni films on n-GaAs. Sens. Actuators A 347, 113931 (2022). https://doi.org/10.1016/j.sna.2022.113931

    Article  CAS  Google Scholar 

  6. Q. Zhao, P. Chen, D. Zheng, T. Wang, A. Castellanos-Gomez, R. Frisenda, Multifunctional indium selenide devices based on van der Waals contacts: high-quality Schottky diodes and optoelectronic memories. Nano Energy 108, 108238 (2023). https://doi.org/10.1016/j.nanoen.2023.108238

    Article  CAS  Google Scholar 

  7. P.R. Ghediya, Y.M. Palan, D.P. Bhangadiya, I.I. Nakani, T.K. Chaudhuri, K. Joshi, C.K. Sumesh, J. Ray, Electrical properties of Ag/p-Cu2NiSnS4 thin film Schottky diode. Mater. Today Commun. 28, 102697 (2021). https://doi.org/10.1016/j.mtcomm.2021.102697

    Article  CAS  Google Scholar 

  8. A. Haddout, M. Fahoume, A. Qachaou, A. Raidou, M. Lharch, N. Elharfaoui, Influence of composition ratio on the performances of kesterite solar cell with double CZTS layers—a numerical approach. Sol. Energy 189, 491–502 (2019). https://doi.org/10.1016/j.solener.2019.07.098

    Article  CAS  Google Scholar 

  9. R. Mannu, S. Padhy, U.P. Singh, Variation of different layer parameters in a CZTS based solar cell for optimum performance: a simulative approach. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.07.586

    Article  Google Scholar 

  10. A.S. Nazligul, M. Wang, K.L. Choy, Recent development in earth-abundant kesterite materials and their applications. Sustainability 12, 5138 (2020). https://doi.org/10.3390/su12125138

    Article  CAS  Google Scholar 

  11. S. Schorr, H.-J. Hoebler, M. Tovar, A neutron diffraction study of the stannite–kesterite solid solution series. Eur. J. Mineral. (2007). https://doi.org/10.1127/0935-1221/2007/0019-0065

    Article  Google Scholar 

  12. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95, 1421–1436 (2011). https://doi.org/10.1016/j.solmat.2010.11.028

    Article  CAS  Google Scholar 

  13. J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, H. Schock, ZnO/CdS/Cu(In, Ga)Se2 thin film solar cells with improved performance. In: Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference—1993 (Cat. No. 93CH3283-9), 1993, pp. 364–371. https://doi.org/10.1109/PVSC.1993.347154.

  14. J.-H. Yoon, T.-Y. Seong, J. Jeong, Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells. Prog. Photovolt. Res. Appl. 21, 58–63 (2013). https://doi.org/10.1002/pip.2193

    Article  CAS  Google Scholar 

  15. B.T. Gershon, Y.S. Lee, R. Mankad, O. Gunawan, T. Gokmen, D. Bishop, B. McCandless, S. Guha, The impact of sodium on the sub-bandgap states in CZTSe and CZTS. Appl. Phys. Lett. 106, 123905 (2015). https://doi.org/10.1063/1.4916635

    Article  CAS  Google Scholar 

  16. K.S. Gour, A.K. Yadav, O.P. Singh, V.N. Singh, Na incorporated improved properties of Cu2ZnSnS4 (CZTS) thin film by DC sputtering. Vacuum 154, 148–153 (2018). https://doi.org/10.1016/j.vacuum.2018.05.007

    Article  CAS  Google Scholar 

  17. B. Liu, J. Guo, R. Hao, L. Wang, K. Gu, S. Sun, A. Aierken, Effect of Na doping on the performance and the band alignment of CZTS/CdS thin film solar cell. Sol. Energy 201, 219–226 (2020). https://doi.org/10.1016/j.solener.2020.02.088

    Article  CAS  Google Scholar 

  18. Z. Laghfour, S. Aazou, M. Taibi, G. Schmerber, A. Ulyashin, A. Dinia, A. Slaoui, M. Abd-Lefdil, Z. Sekkat, Sodium doping mechanism on sol–gel processed kesterite Cu2ZnSnS4 thin films. Superlattices Microstruct. 120, 747–752 (2018). https://doi.org/10.1016/j.spmi.2018.05.018

    Article  CAS  Google Scholar 

  19. A. Nagaoka, M.A. Scarpulla, K. Yoshino, Na-doped Cu2ZnSnS4 single crystal grown by traveling-heater method. J. Crystal Growth 453, 119–123 (2016). https://doi.org/10.1016/j.jcrysgro.2016.08.014

    Article  CAS  Google Scholar 

  20. O.P. Singh, A. Sharma, K.S. Gour, S. Husale, V.N. Singh, Fast switching response of Na-doped CZTS photodetector from visible to NIR range. Sol. Energy Mater. Sol. Cells 157, 28–34 (2016). https://doi.org/10.1016/j.solmat.2016.04.058

    Article  CAS  Google Scholar 

  21. K.-J. Yang, J.-H. Sim, D.-H. Son, D.-H. Kim, J.-K. Kang, Two different effects of Na on Cu2ZnSnS4 thin-film solar cells. Curr. Appl. Phys. 15, 1512–1515 (2015). https://doi.org/10.1016/j.cap.2015.08.021

    Article  Google Scholar 

  22. J. Zeng, K. Liao, Z. Chen, Y. Hu, L. Qin, X. Li, J. Xu, L. Zhao, W. Zhou, Q. Wang, J. Sun, Na incorporation controlled single phase kesterite Cu2ZnSnS4 solar cell material. Mater. Lett. 265, 127355 (2020). https://doi.org/10.1016/j.matlet.2020.127355

    Article  CAS  Google Scholar 

  23. M. Marzougui, H. Hammami, H. Oueslati, R.C. Germanicus, C. Leroux, D. Pelloquin, M. Ben Rabeh, M. Kanzari, Study of the beneficial effects of sodium doping Cu2ZnSnS4 material. Opt. Mater. 132, 112709 (2022). https://doi.org/10.1016/j.optmat.2022.112709

    Article  CAS  Google Scholar 

  24. H. Oueslati, M. Ben Rabeh, J. Martin, M. Kanzari, Structural, morphological and optical properties of Cu2ZnxFe1−xSnS4 thin films grown by thermal evaporation. Thin Solid Films 669, 633–640 (2019). https://doi.org/10.1016/j.tsf.2018.11.048

    Article  CAS  Google Scholar 

  25. H. Hammami, M. Marzougui, H. Oueslati, M.B. Rabeh, M. Kanzari, Synthesis, growth and characterization of Cu2CoSnS4 thin films via thermal evaporation method. Optik 227, 166054 (2021). https://doi.org/10.1016/j.ijleo.2020.166054

    Article  CAS  Google Scholar 

  26. K.V. Gunavathy, K. Tamilarasan, C. Rangasami, A.M.S. Arulanantham, Effect of solvent on the characteristic properties of nebulizer spray pyrolyzed Cu2ZnSnS4 absorber thin films for photovoltaic application. Thin Solid Films 697, 137841 (2020). https://doi.org/10.1016/j.tsf.2020.137841

    Article  CAS  Google Scholar 

  27. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopart. Res. 22, 267 (2020). https://doi.org/10.1007/s11051-020-05001-7

    Article  CAS  Google Scholar 

  28. C. Nefzi, N. Beji, M. Souli, A. Mejri, S. Alleg, N. Kamoun-Turki, Effect of gamma-irradiation on optical, structural and electrical properties of In2O3: F thin films for photocatalysis application. Opt. Laser Technol. 112, 85–92 (2019). https://doi.org/10.1016/j.optlastec.2018.11.010

    Article  CAS  Google Scholar 

  29. J. Xu, S. Shang, J. Yang, J. Liu, S. Jiang, Effect of sodium-doping on the performance of CZTS absorb layer: single and bifacial sodium-incorporation method. Sol. Energy 221, 476–482 (2021). https://doi.org/10.1016/j.solener.2021.04.063

    Article  CAS  Google Scholar 

  30. O.P. Singh, K.S. Gour, R. Parmar, V.N. Singh, Sodium induced grain growth, defect passivation and enhancement in the photovoltaic properties of Cu2ZnSnS4 thin film solar cell. Mater. Chem. Phys. 177, 293–298 (2016). https://doi.org/10.1016/j.matchemphys.2016.04.030

    Article  CAS  Google Scholar 

  31. Y.E. Romanyuk, S.G. Haass, S. Giraldo, M. Placidi, D. Tiwari, D.J. Fermin, X. Hao, H. Xin, T. Schnabel, M. Kauk-Kuusik, P. Pistor, S. Lie, L.H. Wong, Doping and alloying of kesterites. J. Phys. Energy 1, 044004 (2019). https://doi.org/10.1088/2515-7655/ab23bc

    Article  CAS  Google Scholar 

  32. S.K. Abdel-Aal, A.I. Beskrovnyi, A.M. Ionov, R.N. Mozhchil, A.S. Abdel-Rahman, Structure investigation by neutron diffraction and X-ray diffraction of graphene nanocomposite CuO–rGO prepared by low-cost method. Phys. Status Solidi (a) 218, 2100138 (2021). https://doi.org/10.1002/pssa.202100138

    Article  CAS  Google Scholar 

  33. S.K. Abdel-Aal, M.F. Kandeel, A.F. El-Sherif, A.S. Abdel-Rahman, Synthesis, characterization, and optical properties of new organic–inorganic hybrid perovskites [(NH3)2(CH2)3]CuCl4 and [(NH3)2(CH2)4]CuCl2Br2. Phys. Status Solidi (a) 218, 2100036 (2021). https://doi.org/10.1002/pssa.202100036

    Article  CAS  Google Scholar 

  34. B. Himabindu, N.S.M.P. Latha Devi, B. Rajini Kanth, Microstructural parameters from X-ray peak profile analysis by Williamson-Hall models; a review. Mater. Today Proc. 47, 4891–4896 (2021). https://doi.org/10.1016/j.matpr.2021.06.256

    Article  CAS  Google Scholar 

  35. D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size–strain plot methods of CdSe nanoparticles—a comparative study. Mater. Chem. Phys. 239, 122021 (2020). https://doi.org/10.1016/j.matchemphys.2019.122021

    Article  CAS  Google Scholar 

  36. An approach to the micro-strain distribution inside nanoparticle structure (2023). https://doi.org/10.21203/rs.3.rs-2281463/v2

  37. A. Jemi, D. Abdelkader, F.C. Akkari, B. Gallas, M. Kanzari, Optical characterization of nano-structured Cu2ZnSnS4 thin films deposited by GLAD technique. Chin. J. Phys. 60, 193–207 (2019). https://doi.org/10.1016/j.cjph.2019.04.019

    Article  CAS  Google Scholar 

  38. N. Azmi, P. Chelvanathan, Y. Yusoff, M.T. Ferdaous, A.W.M. Zuhdi, S.K. Tiong, N. Amin, Enhancing microstructural and optoelectronic properties of CZTS thin films by post deposition ionic treatment. Mater. Lett. 285, 129117 (2021). https://doi.org/10.1016/j.matlet.2020.129117

    Article  CAS  Google Scholar 

  39. K. Kaur, Nisika, A.H. Chowdhury, Q. Qiao, M. Kumar, Nanoscale charge transport and local surface potential distribution to probe the defect passivation in Cr-substituted earth abundant CZTS absorber layer, J. Alloys Compd. 854, 157160 (2021). https://doi.org/10.1016/j.jallcom.2020.157160

  40. N. Khemiri, S. Chamekh, M. Kanzari, Properties of thermally evaporated CZTS thin films and numerical simulation of earth abundant and non toxic CZTS/Zn(S, O) based solar cells. Sol. Energy 207, 496–502 (2020). https://doi.org/10.1016/j.solener.2020.06.114

    Article  CAS  Google Scholar 

  41. K. Sun, F. Liu, C. Yan, F. Zhou, J. Huang, Y. Shen, R. Liu, X. Hao, Influence of sodium incorporation on kesterite Cu2ZnSnS4 solar cells fabricated on stainless steel substrates. Sol. Energy Mater. Sol. Cells 157, 565–571 (2016). https://doi.org/10.1016/j.solmat.2016.07.036

    Article  CAS  Google Scholar 

  42. D.S. Dhawale, A. Ali, A.C. Lokhande, Impact of various dopant elements on the properties of kesterite compounds for solar cell applications: a status review. Sustain. Energy Fuels 3, 1365–1383 (2019). https://doi.org/10.1039/C9SE00040B

    Article  CAS  Google Scholar 

  43. A. Hannachi, H. Oueslati, N. Khemiri, M. Kanzari, Effects of sulfurization on the optical properties of Cu2ZnxFe1−xSnS4 thin films. Opt. Mater. 72, 702–709 (2017). https://doi.org/10.1016/j.optmat.2017.07.031

    Article  CAS  Google Scholar 

  44. D.E. Milovzorov, A.M. Ali, T. Inokuma, Y. Kurata, T. Suzuki, S. Hasegawa, Optical properties of silicon nanocrystallites in polycrystalline silicon films prepared at low temperature by plasma-enhanced chemical vapor deposition. Thin Solid Films 382, 47–55 (2001). https://doi.org/10.1016/S0040-6090(00)01208-6

    Article  CAS  Google Scholar 

  45. S.K. Abdel-Aal, A.S. Abdel-Rahman, Fascinating physical properties of 2D hybrid perovskite [(NH3)(CH2)7(NH3)]CuClxBr4–x, x = 0, 2 and 4. J. Electron. Mater. 48, 1686–1693 (2019). https://doi.org/10.1007/s11664-018-06916-7

    Article  CAS  Google Scholar 

  46. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. A 22, 0903–0922 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  47. H. Oueslati, M. Ben Rabeh, M. Kanzari, Growth and characterization of the evaporated quaternary absorber Cu2FeSnS4 for solar cell applications. J. Electron. Mater. 47, 3577–3584 (2018). https://doi.org/10.1007/s11664-018-6202-0

    Article  CAS  Google Scholar 

  48. O.P. Singh, R. Parmar, K.S. Gour, M.K. Dalai, J. Tawale, S.P. Singh, V.N. Singh, Synthesis and characterization of petal type CZTS by stacked layer reactive sputtering. Superlattices Microstruct. 88, 281–286 (2015). https://doi.org/10.1016/j.spmi.2015.09.020

    Article  CAS  Google Scholar 

  49. R. Touati, M. Ben Rabeh, M. Kanzari, Effect of post-sulfurization on the structural and optical properties of Cu2ZnSnS4 thin films deposited by vacuum evaporation method. Thin Solid Films 582, 198–202 (2015). https://doi.org/10.1016/j.tsf.2014.12.032

    Article  CAS  Google Scholar 

  50. T. Prabhakar, N. Jampana, Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 95, 1001–1004 (2011). https://doi.org/10.1016/j.solmat.2010.12.012

    Article  CAS  Google Scholar 

  51. H. Guo, Y. Li, X. Guo, N. Yuan, J. Ding, Effect of silicon doping on electrical and optical properties of stoichiometric Cu2ZnSnS4 solar cells. Physica B 531, 9–15 (2018). https://doi.org/10.1016/j.physb.2017.12.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Tunisian Ministry of Higher Education and Scientific Research. The authors are grateful to Jérémy Bartringer, from the Spectroscopy Service of the University of Strasbourg-France. Also, the authors are thankful to Pierre Pfeiffer and Jesse Schiffler at I Cube-Laboratory, University of Strasbourg-France for helping in the AFM analysis.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MM contributed to conceptualization, methodology, visualization, formal analysis, and writing-original draft, FA has contributed to the conservation of data and resources, MBR contributed to conceptualization, methodology, editing and validation, MK contributed to supervision.

Corresponding author

Correspondence to M. Marzougui.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Ethical approval

This paper is an original work that has not been previously published in other publications. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. The results are appropriately placed in the context of previous and existing research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzougui, M., Antoni, F., Ben Rabeh, M. et al. Synthesis and study of microstructural, optical and electrical properties of Na-doped Cu2ZnSnS4 thin films via thermal evaporation. J Mater Sci: Mater Electron 35, 11 (2024). https://doi.org/10.1007/s10854-023-11738-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11738-3

Navigation