Skip to main content
Log in

Study on the corrosion and electromagnetic properties of carbonyl iron/Co composites by electroless plating Cu

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu-coated carbonyl iron/Co composites powders were prepared by ball milling and electroless plating method. The microstructure and composition of the powders were analyzed after 5 wt% NaCl immersion corrosion treatment. The results confirmed that the Cu coating acted as a protective layer. According to the transmission line theory, the value of minimum reflection loss (RLmin) for corroded Cu-coated composites shifted to the higher frequency with relatively lower value in comparison to corroded raw carbonyl iron/Co composites. The bandwidth below − 5 dB could reach nearly 10 GHz with the value of RLmin could reach − 8.0 dB for Cu-coated composites. It is proved that the Cu-coated carbonyl iron/Co composites by electroless plating technique can retain microwave absorption property during the NaCl solution corrosion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. C. Zhang, J. Jiang, S. Bie, Li. Zhang, L. Miao, Xu. Xinxin, Electromagnetic and microwave absorption properties of surface modified Fe–Si–Al flakes with nylon. J. Alloys Compds. 527, 71–75 (2012)

    Article  CAS  Google Scholar 

  2. F. Wen, W. Zuo, H. Yi, N. Wang, L. Qiao, F. Li, Microwave-absorbing properties of shape-optimized carbonyl iron particles with maximum microwave permeability. Physica B 404, 3567–3570 (2009)

    Article  CAS  Google Scholar 

  3. D. Min, W. Zhou, Y. Qing, Fa. Luo, D. Zhu, Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field. J. Mater. Sci. 52, 2373–2383 (2017)

    Article  CAS  Google Scholar 

  4. X. Wang, Xu. Xiaojun, W. Gong, Z. Feng, R. Gong, Electromagnetic properties of Fe–Si–Al/BaTiO3/Nd2Fe14B particulate composites at microwave frequencies. J. Appl. Phys. 115, 17C722 (2014)

    Article  Google Scholar 

  5. Y. Zare, M.H. Shams, M. Jazirehpour, Tuning microwave permittivity coefficients for enhancing electromagnetic wave absorption properties of FeCo alloy particles by means of sodium stearate surfactant. J. Alloys Compds. 717, 294–302 (2017)

    Article  CAS  Google Scholar 

  6. L. Yan, J. Liu, S. Zhao, B. Zhang, Z. Gao, H. Ge, Y. Chen, M. Cao, Y. Qin, Coaxial multi-interface hollow Ni–Al2O3–ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 10(5), 1595–1607 (2017)

    Article  CAS  Google Scholar 

  7. K.S. Sista, S. Dwarapudi, D. Kumar, G.R. Sinha, A.P. Moon, Carbonyl iron powders as absorption material for microwave interference shielding: a review. J. Alloys Compds. 853, 157251 (2021)

    Article  CAS  Google Scholar 

  8. Di. Lan, Y. Wang, Y. Wang, X. Zhu, H. Li, X. Guo, J. Ren, Z. Guo, Wu. Guanglei, Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023)

    Article  CAS  Google Scholar 

  9. Mo. Ran, Y. Xiaowei, Li. Mingxing, Ye. Fang, F. Xiaomeng, C. Laifei, Relationship between microstructure and electromagnetic properties of SiC fibers. J. Am. Ceram. Soc. 103(8), 4352–4362 (2020)

    Article  Google Scholar 

  10. W. Guiqin, C. Xiaodong, D. Yuping, L. Shunhua, Electromagnetic properties of carbon black and barium titanate composite materials. J. Alloys Compds. 454(1–2), 340–346 (2008)

    Google Scholar 

  11. Di. Lan, H. Zhou, Wu. Hongjing, A polymer sponge with dual absorption of mechanical and electromagnetic energy. J. Colloid Interface Sci. 633, 92–101 (2023)

    Article  CAS  Google Scholar 

  12. S.E. Shafranjuk, Electromagnetic properties of the graphene junctions. Eur. Phys. J. B. 80(3), 379–393 (2011)

    Article  CAS  Google Scholar 

  13. Z. Cong, C. Yanan, F. Shuangjiu, K. Xucai, Z. Yong, Li. Yue, S. Wei, S. Jibiao, L. Xiansong, Improvement of electromagnetic properties of FeSiAl soft magnetic composites. J. Mater. Sci. 58(23), 9698–9707 (2023)

    Article  Google Scholar 

  14. D. Li, C.J. Choi, Z. Han, X.G. Liu, W.J. Hu, J. Li, Z.D. Zhang, Magnetic and electromagnetic wave absorption properties of α-Fe(N) nanoparticles. J. Magn. Magn. Mater. 321(24), 4081–4085 (2009)

    Article  CAS  Google Scholar 

  15. X. Liu, C. Feng, S.W. Or, C. Jin, F. Xiao, A. Xia, W. Li, Y. Sun, S. Zhao, Synthesis and electromagnetic properties of Al/AlOx-coated Ni nanocapsules. Mater. Res. Bull. 48(10), 3887–3891 (2013)

    Article  CAS  Google Scholar 

  16. C. Liu, J.T. Jiang, Y. Yuan, Y.X. Gong, L. Zhen, Electromagnetic properties of Co flaky particles prepared via-ball milling method. J. Magn. Magn. Mater. 416, 53–60 (2016)

    Article  CAS  Google Scholar 

  17. Y. Chen, Z. Lei, H. Wu, C. Zhu, P. Gao, Q. Ouyang, L.H. Qi, W. Qin, Electromagnetic absorption properties of graphene/Fe nanocomposites. Mater. Res. Bull. 48(9), 3362–3366 (2013)

    Article  CAS  Google Scholar 

  18. Wu. Dan, Y. Wang, S. Deng, Di. Lan, Z. Xiang, Q. He, Heterostructured CoFe@N-doped carbon porous polyhedron for efficient microwave absoption. Nano Res. 16(2), 1859–1868 (2023)

    Article  Google Scholar 

  19. X.G. Huang, S.W. Or, Unique electromagnetic loss properties of Co-doped ZnO nanofiber. Mater. Lett. 238, 271–274 (2019)

    Article  CAS  Google Scholar 

  20. Wu. Yalan, Di. Lan, J. Ren, S. Zhang, A mini review of MOFs derived multifunctional absorbents: from perspective of components regulation. Mater. Today Phys. 36, 101178 (2023)

    Article  Google Scholar 

  21. Z. Zhonglun, J. Zhijiang, G. Duan Yuping, G.J. Shuchao, The superior electromagnetic properties of carbonyl-iron/Fe91.2Si3.1P2.9Sb2.8 composites powder and impedance match mechanism. J. Mater. Sci. 24, 968–973 (2013)

    Google Scholar 

  22. L. Liu, Y. Duan, S. Liu, L. Chen, J. Guo, Microwave absorption properties of one thin sheet employing carbonyl–iron powder and chlorinated polyethylene. J. Magn. Magn. Mater. 322, 1736–1740 (2010)

    Article  CAS  Google Scholar 

  23. Q.-X. Shu-YuanZhang, Y.-X. Yi-RongXue, Microwave absorption performance of the absorber based on epsilon-Fe3N/epoxy and carbonyliron/epoxy composites. J. Magn. Magn. Mater. 374, 755–761 (2015)

    Article  Google Scholar 

  24. W. Li, T.L. Wu, W. Wang, P.C. Zhai, J.G. Guan, Broadband patterned magnetic microwave absorber. J. Appl. Phys. 116, 044110 (2014)

    Article  Google Scholar 

  25. J.H. He, W. Wang, J.G. Guan, Internal strain dependence of complex permeability of ball milled carbonyl iron powders in 2–18 GHz. J. Appl. Phys. 111, 093924 (2012)

    Article  Google Scholar 

  26. X. Chen, D. Zhang, H. Chen, R. Hong, Preparation and characterization of CIP@Fe3O4@PANI composites. Colloids Surf. A 628, 127410 (2021)

    Article  CAS  Google Scholar 

  27. H.I. Hsiang, K.H. Chuang, W.H. Lee, FeSiCr alloy powder to carbonyl iron powder mixing ratio effects on the magnetic properties of the iron-based alloy powder cores prepared using screen printing. Materials 14, 1034 (2021)

    Article  CAS  Google Scholar 

  28. C. Xia, Y. Peng, X. Yi, Z. Yao, Y. Zhu, Hu. Geng, Improved magnetic properties of FeSiCr amorphous soft magnetic composites by adding carbonyl iron powder. J. Non-Cryst. Solids 559, 120673 (2021)

    Article  CAS  Google Scholar 

  29. C. Yin, Y. Cao, J. Fan, L. Bai, F. Ding, F. Yuan, Synthesis of hollow carbonyl iron microspheres via pitting corrosion method and their microwave absorption properties. Appl. Surf. Sci. 270, 432–438 (2013)

    Article  CAS  Google Scholar 

  30. J. He, H. Luo, L. He, S. Yan, D. Shan, S. Huang, L. Deng, Investigation on microwave dielectric behavior of flaky carbonyl iron composites. J. Mater. Sci. Mater. Electron. 29(17), 15112–15118 (2018)

    Article  CAS  Google Scholar 

  31. B. Zhou, Y. Wang, F. Li, L. Tang, T. Wang, L. Qiao, Submicron carbonyl iron particles as an efficient microwave absorber in the low frequency band. J. Phys. D 50(47), 475001 (2017)

    Article  Google Scholar 

  32. Y. Zhou, W. Zhou, R. Li, Y. Qing, Fa. Luo, D. Zhu, Electroless plating preparation and electromagnetic properties of Co-coated carbonyl iron particles/ployimide composite. J. Magn. Magn. Mater. 401, 251–258 (2016)

    Article  CAS  Google Scholar 

  33. A.V. Agaponova, I.V. Bykov, S.A. Maklakov, S.S. Maklakov, A.A. Pukhov, I.A. Ryzhikov, M.V. Sedova, E.E. Shalygina, I.T. Yakubov, Visualization of the domain structure of ferromagnetic films using the magnetochemical effect. Phys. Solid State 53, 1013–1016 (2011)

    Article  CAS  Google Scholar 

  34. D. Niu, J. Yu, Q. Qiao, D. Wang, R. Liu, Improved corrosion resisting property of magnetism iron fiber by SiO2 coating. J. Surf. Eng. Mater. Adv Technol. 2, 163–166 (2012)

    CAS  Google Scholar 

  35. Y. Zhang, A. Bu, Y. Xiang, Y. Yang, W. Chen, H. Cheng, L. Wang, Improving corrosion resistance of carbonyl iron powders by plasma electrolytic deposition. Mater. Des. 188, 108480 (2020)

    Article  CAS  Google Scholar 

  36. M.A. Abshinova, N.E. Kazantseva, P. Saha, I. Sapurina, J. Kovarova, J. Stejskal, The enhancement of the oxidation resistance of carbonyl iron by polyaniline coating and consequent changes in electromagnetic properties. Polym. Degrad. Stab. 93, 1826–1831 (2008)

    Article  CAS  Google Scholar 

  37. S.S. Maklakov, A.N. Lagarkov, S.A. Maklakov, Y.A. Adamovich, D.A. Petrov, K.N. Rozanov, I.A. Ryzhikov, A.Y. Zarubina, K.V. Pokholok, D.S. Filimonov, Corrosion-resistive magnetic powder Fe@SiO2 for microwave applications. J. Alloys Compds. 706, 267–273 (2017)

    Article  CAS  Google Scholar 

  38. Y. Zhai, D. Zhu, S. Duan, Fa. Luo, Novel Fe3-4N@FCI particles with improved microwave absorption and antioxidation properties prepared by surface nitridation method. Chem. Phys. Lett. 755, 137803 (2020)

    Article  CAS  Google Scholar 

  39. Y.C. Chen, R.L. Liu, X.L. Chen, H.J. Shu, M.D. Ger, Microwave-assisted activation for electroless nickel plating on PMMA microspheres. Appl. Surf. Sci. 257, 6734–6740 (2011)

    Article  CAS  Google Scholar 

  40. W. Yang, Fu. Yanyan, An. Xia, K. Zhang, Wu. Zhi, Microwave absorption property of Ni–Co–Fe–P-coated flake graphite prepared by electroless plating. J. Alloy. Compds. 518, 6–10 (2012)

    Article  CAS  Google Scholar 

  41. Z. Ma, J. Wang, Q. Liu, J. Yuan, Microwave absorption of electroless Ni–Co–P-coated SiO2 powder. Appl. Surf. Sci. 255, 6629–6633 (2009)

    Article  CAS  Google Scholar 

  42. K.Y. Park, J.H. Han, S.B. Lee, J.W. Yi, Microwave absorbing hybrid composites containing Ni–Fe coated carbon nanofibers prepared by electroless plating. Composites 42, 573–578 (2011)

    Article  Google Scholar 

  43. S. Jia, F. Luo, Y. Qing, W. Zhou, D. Zhu, Electroless plating preparation and microwave electromagnetic properties of Ni-coated carbonyl iron particle/epoxy coatings. Physica B 405, 3611–3615 (2010)

    Article  CAS  Google Scholar 

  44. C. Huang, Q. Dong, X. Yin, R. Zhang, Y. Zhang, D.A. Yang, Antioxidation and electromagnetic properties of Co-coated hollow carbonyl iron particles by electroless palating method. J. Mater. Sci. Mater. Electron. 28, 5037–5043 (2017)

    Article  CAS  Google Scholar 

  45. Y. Zhou, W. Zhou, R. Li, Y. Qing, Fa. Luo, D. Zhu, Electroless plating preparation and electromagnetic properties of Co-coated carbonyl iron particles/polyimide composite. J. Magn. Magn. Mater. 401, 251–258 (2016)

    Article  CAS  Google Scholar 

  46. H. Wang, D. Zhu, W. Zhou, Fa. Luo, Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co. J. Magn. Magn. Mater. 393, 445–451 (2015)

    Article  CAS  Google Scholar 

  47. W.P. Li, L.Q. Zhu, J. Gu, H.C. Liu, Microwave absorption properties of fabric coated absorbing material using modified carbonyl iron power. Composites 42, 626–630 (2011)

    Article  Google Scholar 

  48. R.-B. Yang, W.-F. Liang, Microwave properties of high-aspectratio carbonyl iron/epoxy absorbers. J. Appl. Phys. 109, 07A311 (2011)

    Article  Google Scholar 

  49. J. Sun, Xu. Huailiang, Y. Shen, H. Bi, W. Liang, R.-B. Yang, Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites. J. Alloys Compds. 548, 18–22 (2013)

    Article  CAS  Google Scholar 

  50. Y. Zhai, D.M. Zhu, Q. Chen, H.Y. Nan, Efficiently enhanced microwave absorption of oriented flaky carbonyl iron & MoS2/polyurethane composite with thin thickness. Chem. Phys. Lett. 758, 137908 (2020)

    Article  CAS  Google Scholar 

  51. M. Itoh, K. Nishiyama, F. Shogano et al., Recycle of rare earth sinteredmagnet powder scraps as electromagnetic wave absorbers in gigahertz range. J. Alloys Compd. 451, 507–509 (2008)

    Article  CAS  Google Scholar 

  52. L.J. Deng, P.H. Zhou, J.L. Xie et al., Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 101, 103916 (2007)

    Article  Google Scholar 

  53. X. Liu, C. Hao, H. Jiang, M. Zeng, Yu.R. Hierarchical, NiCo2O4/Co3O4/NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. J. Mater. Chem. C 5, 3770–3778 (2017)

    Article  CAS  Google Scholar 

  54. S. Wen, Y. Liu, X. Zhao, J. Cheng, H. Li, Synthesis, multi-nonlinear dielectric resonance and electromagnetic absorption properties of hcp-cobalt particles. J. Magn. Magn. Mater. 354, 7–11 (2014)

    Article  CAS  Google Scholar 

  55. S.-S. Kim, S.-T. Kim, Y.-C. Yoon, K.-S. Lee, Magnetic, dielectric, and miceowave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J. Appl. Phys. 97, 10F905 (2005)

    Article  Google Scholar 

  56. H. Liang, L. Zhang, Wu. Hongjing, Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber. Small 18, 2203620 (2022)

    Article  CAS  Google Scholar 

  57. H. Liang, G. Chen, D. Liu, Z. Li, S. Hui, J. Yun, L. Zhang, Wu. Hongjing, Exploring the Ni 3d orbital unpaired eletrons induced polarization loss based on Ni single-atoms model absorber. Adv. Func. Mater. 33, 2212604 (2023)

    Article  CAS  Google Scholar 

  58. J. He, H. Luo, L. He, S. Yan, D. Shan, S. Huang, L. Deng, Investigation on microwave dielectric behavior of flaky carbonyl iron composites. J. Mater. Sci. Mater. Electron. 29, 15112–15118 (2018)

    Article  CAS  Google Scholar 

  59. H. Lv, G. Ji, H. Zhang, M. Li, Z. Zuo, Y. Zhao, B. Zhang, D. Tang, Du. Youwei, CoxFey@C composites with tunable atomic ratios for excellent electromagnetic absorption properties. Sci. Rep. 5, 18249 (2015)

    Article  CAS  Google Scholar 

  60. F. Wen, F. Zhang, Z. Liu, Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 115, 14025–14030 (2011)

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (NSFC) (Grant No. 11974188).

Author information

Authors and Affiliations

Authors

Contributions

XN: Conceptualization, experiment, data measurement and analysis, writing. XG: Discuss, review & editing. CJ: Discuss, review & editing.

Corresponding author

Correspondence to Xie Guozhi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ningyan, X., Guozhi, X. & Jing, C. Study on the corrosion and electromagnetic properties of carbonyl iron/Co composites by electroless plating Cu. J Mater Sci: Mater Electron 34, 2293 (2023). https://doi.org/10.1007/s10854-023-11704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11704-z

Navigation