Skip to main content
Log in

Photoresponse analysis of hydrothermally synthesized p-type Cu2FeSnS4 nanoparticles using metal-diethyldithiocarbamate precursors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu2FeSnS4 (CFTS) is a quaternary chalcogenide semiconducting nanomaterial which shows promising features for optoelectronic applications. In the present study, the hydrothermal method was employed to synthesize CFTS nanoparticles using metal–diethyldithiocarbamate and the regularly reported chloride as precursors. From the nanoparticles, thin films were prepared by spin coating, and annealed in sulfur atmosphere. The effect of precursor material on CFTS properties, particularly in the photoresponse, was investigated by spectroscopic and microscopic techniques. Diethyldithiocarbamate route produced single phase, crystalline CFTS nanoparticles were 15–20 nm. The perfect crystalline nature of CFTS nanoparticles was analyzed by HRTEM. The optical absorption spectrum shows strong absorption with an ideal optical band gap which is suitable for solar cell applications and Photoresponse behavior of CFTS thin film was documented. This work contributes to a deeper understanding of the relationship between precursor selection, nanoparticle properties, and photoresponse characteristics, paving the way for enhanced design and utilization of Cu2FeSnS4 nanoparticles in photodetectors and other optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors affirm that the data supporting the findings of this study are available within the article.

References

  1. M.A. Green, Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14(1–2), 65–70 (2002)

    Article  CAS  Google Scholar 

  2. V. Zardetto, B.L. Williams, A. Perrotta, F. Di Giacomo, M.A. Verheijen, R. Andriessen, W.M.M. Kessels, M. Creatore, Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustain. Energy Fuels 1(1), 30–55 (2017)

    Article  CAS  Google Scholar 

  3. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)

    Article  CAS  Google Scholar 

  4. J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, A. Hagfeldt, Promises and challenges of perovskite solar cells. Science 358(6364), 739–744 (2017)

    Article  CAS  Google Scholar 

  5. S.A. Shah, Z. Guo, M.H. Sayyad, J. Sun, Application of mxenes in perovskite solar cells: a short review. Nanomaterials 11(8), 2151 (2021)

    Article  CAS  Google Scholar 

  6. M. Paire, S. Delbos, J. Vidal, N. Naghavi, J.F. Guillemoles, Chalcogenide thin-film solar cells. Solar Cell Mater. 7, 145–215 (2014)

    Article  Google Scholar 

  7. W. Li, J.M.R. Tan, S.W. Leow, S. Lie, S. Magdassi, L.H. Wong, Recent progress in solution-processed copper-chalcogenide thin-film solar cells. Energy Technol. 6(1), 46–59 (2018)

    Article  CAS  Google Scholar 

  8. V. Kheraj, K.K. Patel, S.J. Patel, D.V. Shah, Synthesis and characterisation of copper zinc tin sulphide (CZTS) compound for absorber material in solar-cells. J. Cryst. Growth 362, 174–177 (2013)

    Article  CAS  Google Scholar 

  9. K. Ramasamy, M.A. Malik, P. O’Brien, Routes to copper zinc tin sulfide Cu 2 ZnSnS 4 a potential material for solar cells. Chem. Commun. 48(46), 5703–5714 (2012)

    Article  CAS  Google Scholar 

  10. H. Yang, L.A. Jauregui, G. Zhang, Y.P. Chen, Wu. Yue, Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. Nano Lett. 12(2), 540–545 (2012)

    Article  CAS  Google Scholar 

  11. M.A. Olgar, Enhancement in photovoltaic performance of CZTS Thin-film solar cells through varying stacking order and sulfurization time. J. Mater. Sci. 33(25), 20121–20133 (2022)

    CAS  Google Scholar 

  12. G.S. Babu, X.S. Shajan, A. George, P. Parameswaran, S. Murugesan, R. Divakar, E. Mohandas, S. Kumaresan, G.M. Rao, Low-cost hydrothermal synthesis and characterization of pentanary Cu2ZnxNi1− xSnS4 nanoparticle inks for thin film solar cell applications. Mater. Sci. Semicond. Process. 63, 127–136 (2017)

    Article  CAS  Google Scholar 

  13. R. Ahmad, N.-u-H. Saddiqi, Wu. Mingjian, M. Prato, E. Spiecker, W. Peukert, M. Distaso, Effect of the counteranion on the formation pathway of Cu2ZnSnS4 (CZTS) nanoparticles under solvothermal conditions. Inorg. Chem. 59(3), 1973–1984 (2020)

    Article  CAS  Google Scholar 

  14. F.-J. Fan, Wu. Liang, Yu. Shu-Hong, Energetic I-III–VI 2 and I 2–II–IV–VI 4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environ. Sci. 7(1), 190–208 (2014)

    Article  CAS  Google Scholar 

  15. B.M. Sperry, N.A. Kukhta, Y. Huang, C.K. Luscombe, Ligand decomposition during nanoparticle synthesis: influence of ligand structure and precursor selection. Chem. Mater. 35(2), 570–583 (2023)

    Article  CAS  Google Scholar 

  16. S.D. Deshmukh, R.G. Ellis, D.S. Sutandar, D.J. Rokke, R. Agrawal, Versatile colloidal syntheses of metal chalcogenide nanoparticles from elemental precursors using amine-thiol chemistry. Chem. Mater. 31(21), 9087–9097 (2019)

    Article  CAS  Google Scholar 

  17. D.S. Dhawale, A. Ali, A.C. Lokhande, Impact of various dopant elements on the properties of kesterite compounds for solar cell applications: a status review. Sustain. Energy Fuels 3(6), 1365–1383 (2019)

    Article  CAS  Google Scholar 

  18. S.A. Vanalakar, P.S. Patil, J.H. Kim, Recent advances in synthesis of Cu2FeSnS4 materials for solar cell applications: a review. Sol. Energy Mater. Sol. Cells 182, 204–219 (2018)

    Article  CAS  Google Scholar 

  19. C. Nefzi, M. Souli, Y. Cuminal, N. Kamoun-Turki, Effect of sulfur concentration on structural, optical and electrical properties of Cu2FeSnS4 thin films for solar cells and photocatalysis applications. Superlattices Microstruct. 124, 17–29 (2018)

    Article  CAS  Google Scholar 

  20. C. Dong, G.Y. Ashebir, J. Qi, J. Chen, Z. Wan, W. Chen, M. Wang, Solution-processed Cu2FeSnS4 thin films for photovoltaic application. Mater. Lett. 214, 287–289 (2018)

    Article  CAS  Google Scholar 

  21. V.S. Ghemud, P.R. Jadhav, P.T. Kolhe, P.N. Shelke, S.S. Dahiwale, A. Kshirsagar, Experimental and computational study of Cu2FeSnS4: An emerging quaternary semiconductor. Opt. Mater. 142, 114123 (2023)

    Article  CAS  Google Scholar 

  22. H. Oueslati, M. Ben Rabeh, M. Kanzari, Growth and characterization of the evaporated quaternary absorber Cu2FeSnS4 for Solar cell applications. J. Electron. Mater. 47, 3577–3584 (2018)

    Article  CAS  Google Scholar 

  23. S. Chatterjee, A.J. Pal, A solution approach to p-type Cu2FeSnS4 thin-films and pn-junction solar cells: role of electron selective materials on their performance. Sol. Energy Mater. Sol. Cells 160, 233–240 (2017)

    Article  CAS  Google Scholar 

  24. M.D. Regulacio, N. Tomson, S.L. Stoll, Dithiocarbamate precursors for rare-earth sulfides. Chem. Mater. 17(12), 3114–3121 (2005)

    Article  CAS  Google Scholar 

  25. C. Sambathkumar, N. Nallamuthu, M.K. Kumar, S. Sudhahar, P. Devendran, Electrochemical exploration of cobalt sulfide nanoparticles synthesis using cobalt diethyldithiocarbamate as single source precursor for hybrid supercapacitor device. J. Alloys Compd. 920, 165839 (2022)

    Article  CAS  Google Scholar 

  26. G.O. Siqueira, T. Matencio, H.V. da Silva, Y.G. de Souza, J.D. Ardisson, G.M. de Lima, P.A. de Oliveira, Temperature and time dependence on ZnS microstructure and phases obtained through hydrothermal decomposition of diethyldithiocarbamate complexes. Phys. Chem. Chem. Phys. 15(18), 6796–6803 (2013)

    Article  CAS  Google Scholar 

  27. P. Devendran, T. Alagesan, T.R. Ravindran, K. Pandian, Synthesis of spherical CdS quantum dots using cadmium diethyldithiocarbamate as single source precursor in olive oil medium. Curr. Nanosci. 10(2), 302–307 (2014)

    Article  CAS  Google Scholar 

  28. R.R. Prabhakar, N. Huu Loc, M.H. Kumar, P.P. Boix, S. Juan, R.A. John, S.K. Batabyal, L.H. Wong, Facile water-based spray pyrolysis of earth-abundant Cu2FeSnS4 thin films as an efficient counter electrode in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 6(20), 17661–17667 (2014)

    Article  CAS  Google Scholar 

  29. K. Mokurala, S. Mallick, P. Bhargava, Alternative quaternary chalcopyrite sulfides (Cu2FeSnS4 and Cu2CoSnS4) as electrocatalyst materials for counter electrodes in dye-sensitized solar cells. J. Power. Sources 305, 134–143 (2016)

    Article  CAS  Google Scholar 

  30. C. Nefzi, M. Souli, Y. Cuminal, N. Kamoun-Turki, Effect of substrate temperature on physical properties of Cu2FeSnS4 thin films for photocatalysis applications. Mater. Sci. Eng. B 254, 114509 (2020)

    Article  CAS  Google Scholar 

  31. N. Mukurala, R.K. Mishra, S.H. Jin, A.K. Kushwaha, Sulphur precursor dependent crystallinity and optical properties of solution grown Cu2FeSnS4 particles. Materials Research Express 6(8), 085099 (2019)

    Article  CAS  Google Scholar 

  32. R. Deepika, P. Meena, Colloidal chemical synthesis of quaternary semiconductor Cu2FeSnS4 (CFTS) nanoparticles: absorber materials for thin-film photovoltaic applications. J. Mater. Sci. 34(1), 16 (2023)

    CAS  Google Scholar 

  33. A.C. Ji, X.C. Xie, W.M. Liu, Quantum magnetic dynamics of polarized light in arrays of microcavities. Phys. Rev. Lett. 99(18), 183602 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

GSDB acknowledges the Management of Chettinad College of Engineering and Technology Management, Karur for the support to carry out research work. A portion of this research was performed using facilities at Centre for Nanoscience and Engineering (CeNSE), Indian Institute of Science, Bangalore through Indian Nano User Programme (INUP), funded by Department of Electronics and Information Technology (DeitY), Govt. of India. Special thanks to Dr. Gopal MB, UGC-DAE-CSR, Kalpakkam for TEM analysis and discussions. A part of research work was carried at UGC-DAE Consortium for Scientific Research, Kalpakkam Node, Kokkilamedu, India.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SDB: worked in the laboratory for experimental work, wrote the manuscript, development or design of methodology, creation of models and XSS: Project administration, supervision review and editing of manuscript. Each authors have knowledge about their submission and contributed work equally.

Corresponding author

Correspondence to G. Sahaya Dennish Babu.

Ethics declarations

Competing interest

The authors affirm that they have no known financial or interpersonal conflicts that would have appeared to have an impact on the research presented in this study.

Human and animal rights

All experiments in this study were not involved with human subjects or animals were not performed in accordance with the ethical standards of the institution at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, G.S.D., Shajan, X.S. Photoresponse analysis of hydrothermally synthesized p-type Cu2FeSnS4 nanoparticles using metal-diethyldithiocarbamate precursors. J Mater Sci: Mater Electron 34, 2286 (2023). https://doi.org/10.1007/s10854-023-11692-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11692-0

Navigation