Skip to main content
Log in

Fully flexible impedance-based pressure sensing via nanocomposites of polyvinyl alcohol filled with multiwalled carbon nanotubes, graphene nanoplatelets and silver nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study focuses on improving the performance parameters of nanocomposite-based pressure sensors to ensure comfortable use. Here, nanocomposite-based active sensing materials were screen-printed on cotton fabric. Functionalized carbon nanotubes (fCNTs), graphene nanoplatelets (GNPs) and silver nanoparticles (Ag NPs) were utilized with polyvinyl alcohol (PVA) to produce the nanocomposites to be used as the sensing layer. The sensors were studied in terms of frequency response, percolation threshold, sensitivity, durability and response-recovery speed. The outcomes indicate that all fabricated sensors are highly capacitive when no pressure is applied. However, as the pressure increases, the sensors favor resistive responses. This rapid variation in the phase angle allows sensing of touch or pressure. Furthermore, frequency response analyzed in 100 Hz–25 MHz range under pressure revealed that fCNT-based and GNP-based sensors switched from piezoresistive to capacitive sensing after almost 80 kHz and a similar change occurred for Ag NP-based sensor after 1 MHz. Considering impedance responses rather than only capacitive or piezoresistive measurements provides more information, and allows us to evaluate the tactile sensors in a frequency range. This finding is critical to enable the sensor to be used with different sensing mechanisms in specific frequency ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J. Li et al., Ultrathin smart energy-storage devices for skin-interfaced wearable electronics. ACS Energy Lett. 8(1), 1–8 (2022). https://doi.org/10.1021/acsenergylett.2c02029

    Article  CAS  Google Scholar 

  2. T.G. Yun et al., All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 13(3), 3141–3150 (2019). https://doi.org/10.1021/acsnano.8b08560

    Article  CAS  Google Scholar 

  3. N.A. Choudhry, L. Arnold, A. Rasheed, I.A. Khan, L. Wang, Textronics—a review of textile-based wearable electronics. Adv. Eng. Mater. (2021). https://doi.org/10.1002/adem.202100469

    Article  Google Scholar 

  4. J. Jang et al., Knitted strain sensor with carbon fiber and aluminum-coated yarn, for wearable electronics. J. Mater. Chem. C 9(46), 16440–16449 (2021). https://doi.org/10.1039/d1tc01899j

    Article  CAS  Google Scholar 

  5. X. Liao et al., Hetero-contact microstructure to program discerning tactile interactions for virtual reality. Nano Energy 60, 127–136 (2019). https://doi.org/10.1016/j.nanoen.2019.03.048

    Article  CAS  Google Scholar 

  6. S. Mishra et al., Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Sci. Adv. 6(11), eaay1729 (2020). https://doi.org/10.1126/sciadv.aay1729

    Article  CAS  Google Scholar 

  7. L. Li et al., Hydrophobic and stable MXene-polymer pressure sensors for wearable electronics. ACS Appl. Mater. Interfaces 12(13), 15362–15369 (2020). https://doi.org/10.1021/acsami.0c00255

    Article  CAS  Google Scholar 

  8. X.Q. Shen, M.D. Li, J.P. Ma, Q.D. Shen, Skin-inspired pressure sensor with MXene/P(VDF-TrFE-CFE) as active layer for wearable electronics. Nanomaterials (Basel) (2021). https://doi.org/10.3390/nano11030716

    Article  Google Scholar 

  9. A.H. Anwer et al., Recent advances in touch sensors for flexible wearable devices. Sensors (Basel) (2022). https://doi.org/10.3390/s22124460

    Article  Google Scholar 

  10. Q. Liu et al., All textile-based robust pressure sensors for smart garments. Chem. Eng. J. (2023). https://doi.org/10.1016/j.cej.2022.140302

    Article  Google Scholar 

  11. J. Yan et al., Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.133458

    Article  Google Scholar 

  12. J. Huang et al., Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection. Adv. Electron. Mater. (2019). https://doi.org/10.1002/aelm.201900241

    Article  Google Scholar 

  13. S.J. Kim, S. Mondal, B.K. Min, C.G. Choi, Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS(2)/graphene foam/ecoflex hybrid nanostructures. ACS Appl. Mater. Interfaces 10(42), 36377–36384 (2018). https://doi.org/10.1021/acsami.8b11233

    Article  CAS  Google Scholar 

  14. F. Gao et al., A stretching-insensitive, self-powered and wearable pressure sensor. Nano Energy (2022). https://doi.org/10.1016/j.nanoen.2021.106695

    Article  Google Scholar 

  15. X. Weng, C. Zhang, C. Feng, H. Jiang, Facile fabrication of an ultrasensitive all-fabric wearable pressure sensor based on phosphorene-gold nanocomposites. Adv. Mater. Interfaces (2022). https://doi.org/10.1002/admi.202102588

    Article  Google Scholar 

  16. Y. Xiong et al., A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2019.104436

    Article  Google Scholar 

  17. J. Yang et al., Flexible, tunable and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl. Mater. Interfaces 11(16), 14997–15006 (2019). https://doi.org/10.1021/acsami.9b02049

    Article  CAS  Google Scholar 

  18. X.P. Li et al., Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J. Colloid Interface Sci. 542, 54–62 (2019). https://doi.org/10.1016/j.jcis.2019.01.123

    Article  CAS  Google Scholar 

  19. J. Shi et al., Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 14(27), e1800819 (2018). https://doi.org/10.1002/smll.201800819

    Article  CAS  Google Scholar 

  20. J. Abanah Shirley, S. Esther Florence, B.S. Sreeja, R. Sankararajan, Bio-compatible piezoelectric material based wearable pressure sensor for smart textiles. Smart Mater. Struct.Struct. 31(12), 125015 (2022). https://doi.org/10.1088/1361-665X/ac9ffa

    Article  Google Scholar 

  21. D.B. Kim et al., Weave-pattern-dependent fabric piezoelectric pressure sensors based on polyvinylidene fluoride nanofibers electrospun with 50 nozzles. npj Flex. Electron. (2022). https://doi.org/10.1038/s41528-022-00203-6

    Article  Google Scholar 

  22. F. He et al., Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl. Mater. Interfaces 12(5), 6442–6450 (2020). https://doi.org/10.1021/acsami.9b19721

    Article  CAS  Google Scholar 

  23. S.Y. Xia et al., Self-powered paper-based pressure sensor driven by triboelectric nanogenerator for detecting dynamic and static forces. IEEE Trans. Electron Devices 70(2), 732–738 (2023). https://doi.org/10.1109/ted.2022.3225129

    Article  CAS  Google Scholar 

  24. W. Chen, X. Yan, Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review. J. Mater. Sci. Technol. 43, 175–188 (2020). https://doi.org/10.1016/j.jmst.2019.11.010

    Article  CAS  Google Scholar 

  25. S.J. Park, J. Kim, M. Chu, M. Khine, Flexible piezoresistive pressure sensor using wrinkled carbon nanotube thin films for human physiological signals. Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201700158

    Article  Google Scholar 

  26. Y.F. Wang et al., Deep eutectic solvent induced porous conductive composite for fully printed piezoresistive pressure sensor. Adv. Mater. Technol. (2021). https://doi.org/10.1002/admt.202100731

    Article  Google Scholar 

  27. Y. Sekertekin, I. Bozyel, D. Gokcen, A flexible and low-cost tactile sensor produced by screen printing of carbon black/PVA composite on cellulose paper. Sensors (Basel) (2020). https://doi.org/10.3390/s20102908

    Article  Google Scholar 

  28. X. Han, Z. Lv, F. Ran, L. Dai, C. Li, C. Si, Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel. Int. J. Biol. Macromol.Macromol. 176, 78–86 (2021). https://doi.org/10.1016/j.ijbiomac.2021.02.055

    Article  CAS  Google Scholar 

  29. L. Gao et al., All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl. Mater. Interfaces 11(28), 25034–25042 (2019). https://doi.org/10.1021/acsami.9b07465

    Article  CAS  Google Scholar 

  30. B.B. Beenarani, C.P. Sugumaran, A flexible, cost-effective, and eco-friendly solid state supercapacitor based on PVA/KCl/Carbon black nanocomposite. Ionics 26(3), 1465–1473 (2019). https://doi.org/10.1007/s11581-019-03307-8

    Article  CAS  Google Scholar 

  31. M.N. Norizan et al., Carbon nanotubes: functionalisation and their application in chemical sensors. RSC Adv. 10(71), 43704–43732 (2020). https://doi.org/10.1039/d0ra09438b

    Article  CAS  Google Scholar 

  32. E. Menna, F. Della Negra, M. Dalla Fontana, M. Meneghetti, Selectivity of chemical oxidation attack of single-wall carbon nanotubes in solution. Phys. Rev. B (2003). https://doi.org/10.1103/PhysRevB.68.193412

    Article  Google Scholar 

  33. A. Del Bosque, X.F. Sánchez-Romate, A. Gómez, M. Sánchez, A. Ureña, Highly stretchable strain sensors based on graphene nanoplatelet-doped ecoflex for biomedical purposes. Sens. Actuators A Phys. (2023). https://doi.org/10.1016/j.sna.2023.114249

    Article  Google Scholar 

  34. R.R. Venkata Krishna, A.K. Venkata, P.S. Karthik, P.S. Surya, Conductive silver inks and their applications in printed and flexible electronics. RSC Adv. 5(95), 77760–77790 (2015). https://doi.org/10.1039/c5ra12013f

    Article  Google Scholar 

  35. E.A.M. Farrag, R.A. Abdel-Rahem, S.S. Ibrahim, A.S. Ayesh, Electrical and optical properties of well-dispersed MWCNTs/PVA nanocomposites under different pH conditions. J. Thermoplast. Compos. Mater.Thermoplast. Compos. Mater. 32(4), 442–453 (2018). https://doi.org/10.1177/0892705718759705

    Article  CAS  Google Scholar 

  36. M. Hamidinejad, B. Zhao, A. Zandieh, N. Moghimian, T. Filleter, C.B. Park, Enhanced electrical and electromagnetic interference shielding properties of polymer-graphene nanoplatelet composites fabricated via supercritical-fluid treatment and physical foaming. ACS Appl. Mater. Interfaces 10(36), 30752–30761 (2018). https://doi.org/10.1021/acsami.8b10745

    Article  CAS  Google Scholar 

  37. E. Palaimiene et al., Electrical percolation and electromagnetic properties of polydimethylsiloxane composites filled with Ag nanoparticles of different sizes. Polym. Compos.. Compos. 41(11), 4750–4756 (2020). https://doi.org/10.1002/pc.25748

    Article  CAS  Google Scholar 

  38. T.P. Dyachkova, A.V. Rukhov, E.N. Tugolukov, N.V. Usol’tseva, Y.A. Khan, N.A. Chapaksov, Studying of structural changes of graphene layers of carbon nanotubes functionalized by Raman spectroscopy. Liq. Cryst. Appl. 17(4), 83–89 (2017). https://doi.org/10.18083/LCAppl.2017.4.83

    Article  CAS  Google Scholar 

  39. T.Y. Chen, T.L. Lin, C.C. Chen, C.M. Chen, C. Chia-Fu, Improved catalytic performance of Pt supported on multi-wall carbon nanotubes as cathode for direct methanol fuel cell applications prepared by dual-stepped surface thiolation processes. J. Chin. Chem. Soc. 56(6), 1236–1243 (2009). https://doi.org/10.1002/jccs.200900178

    Article  CAS  Google Scholar 

  40. N.O.V. Plank, Functionalisation of carbon nanotubes for molecular electronics (The University of Edinburgh, Edinburgh, 2005)

    Google Scholar 

  41. M. Rashad, F. Pan, Z. Yu, M. Asif, H. Lin, R. Pan, Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets. Prog. Nat. Sci.: Mater. Int. 25(5), 460–470 (2015). https://doi.org/10.1016/j.pnsc.2015.09.005

    Article  CAS  Google Scholar 

  42. S. Linic, U. Aslam, C. Boerigter, M. Morabito, Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14(6), 567–576 (2015). https://doi.org/10.1038/nmat4281

    Article  CAS  Google Scholar 

  43. R.R. Arvizo, S. Bhattacharyya, R.A. Kudgus, K. Giri, R. Bhattacharya, P. Mukherjee, Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev. 41(7), 2943–2970 (2012). https://doi.org/10.1039/c2cs15355f

    Article  CAS  Google Scholar 

  44. D. Chen, X. Qiao, X. Qiu, J. Chen, Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. J. Mater. Sci. 44(4), 1076–1081 (2009). https://doi.org/10.1007/s10853-008-3204-y

    Article  CAS  Google Scholar 

  45. N. Joshi, N. Jain, A. Pathak, J. Singh, R. Prasad, C.P. Upadhyaya, Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J. Sol-Gel Sci. Technol. 86(3), 682–689 (2018). https://doi.org/10.1007/s10971-018-4666-2

    Article  CAS  Google Scholar 

  46. O. Kanoun, A. Bouhamed, R. Ramalingame, J.R. Bautista-Quijano, D. Rajendran, A. Al-Hamry, Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors. Sensors (2021). https://doi.org/10.3390/s21020341

    Article  Google Scholar 

  47. B.M. Lee, Z. Huang, K.J. Loh, Effect of carbon nanotube alignment on nanocomposite sensing performance. Mater. Res. Exp. 7(4), 046406 (2020). https://doi.org/10.1088/2053-1591/ab8842

    Article  CAS  Google Scholar 

  48. K. Parmar, M. Mahmoodi, C. Park, S.S. Park, Effect of CNT alignment on the strain sensing capability of carbon nanotube composites. Smart Mater. Struct.Struct. 22(7), 075006 (2013). https://doi.org/10.1088/0964-1726/22/7/075006

    Article  CAS  Google Scholar 

  49. A. Ruiz-Vargas, A. Ivorra, J.W. Arkwright, Design, construction and validation of an electrical impedance probe with contact force and temperature sensors suitable for in-vivo measurements. Sci. Rep. 8(1), 14818 (2018). https://doi.org/10.1038/s41598-018-33221-4

    Article  CAS  Google Scholar 

  50. M. Simić, T. Kojić, M. Radovanović, G.M. Stojanović, H. Al-Salami, Impedance spectroscopic analysis of the interidigitated flexible sensor for bacteria detection. IEEE Sens. J. 20(21), 12791–12798 (2020). https://doi.org/10.1109/JSEN.2020.3002839

    Article  Google Scholar 

  51. A. Sinha, A.K. Stavrakis, M. Simić, G.M. Stojanović, Wearable humidity sensor embroidered on a commercial face mask and its electrical properties. J. Mater. Sci. 58(4), 1680–1693 (2023). https://doi.org/10.1007/s10853-022-08135-2

    Article  CAS  Google Scholar 

  52. M. Yang, L. Weng, H. Zhu, F. Zhang, T. Fan, D. Zhang, Simultaneously improving the mechanical and electrical properties of poly(vinyl alcohol) composites by high-quality graphitic nanoribbons. Sci. Rep. 7(1), 17137 (2017). https://doi.org/10.1038/s41598-017-17365-3

    Article  CAS  Google Scholar 

  53. A. Mehmood, N.M. Mubarak, M. Khalid, P. Jagadish, R. Walvekar, E.C. Abdullah, Graphene/PVA buckypaper for strain sensing application. Sci. Rep. 10(1), 20106 (2020). https://doi.org/10.1038/s41598-020-77139-2

    Article  CAS  Google Scholar 

  54. A.R. Deline et al., Influence of oxygen-containing functional groups on the environmental properties, transformations and toxicity of carbon nanotubes. Chem. Rev. 120(20), 11651–11697 (2020). https://doi.org/10.1021/acs.chemrev.0c00351

    Article  CAS  Google Scholar 

  55. C. Peng, X. Zhang, Chemical functionalization of graphene nanoplatelets with hydroxyl, amino and carboxylic terminal groups. Chemistry 3(3), 873–888 (2021). https://doi.org/10.3390/chemistry3030064

    Article  CAS  Google Scholar 

  56. S. Chouhan, S. Guleria, Green synthesis of AgNPs using Cannabis sativa leaf extract: characterization, antibacterial, anti-yeast and α-amylase inhibitory activity. Mater. Sci. Energy Technol. 3, 536–544 (2020). https://doi.org/10.1016/j.mset.2020.05.004

    Article  CAS  Google Scholar 

  57. Y. Sekertekin, D. Gokcen, Composites of functionalized multi-walled carbon nanotube and sodium alginate for tactile sensing applications. Eng. Proc. (2022). https://doi.org/10.3390/ecsa-9-13349

    Article  Google Scholar 

  58. H. Guo et al., Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun.Commun. 11(1), 5747 (2020). https://doi.org/10.1038/s41467-020-19531-0

    Article  CAS  Google Scholar 

  59. K.H. Ha et al., Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid responses of a highly porous nanocomposite. Adv. Mater. 33(48), e2103320 (2021). https://doi.org/10.1002/adma.202103320

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank METU Central Laboratory for SEM imaging and Raman spectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

YS designed and performed the experiments, and collected the data. YS and DG analyzed the results. The manuscript was written by YS and revised by DG. All research was supervised by DG.

Corresponding author

Correspondence to Yeter Sekertekin.

Ethics declarations

Competing interest

The authors have no relevant financial or competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 409 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekertekin, Y., Gokcen, D. Fully flexible impedance-based pressure sensing via nanocomposites of polyvinyl alcohol filled with multiwalled carbon nanotubes, graphene nanoplatelets and silver nanoparticles. J Mater Sci: Mater Electron 34, 2243 (2023). https://doi.org/10.1007/s10854-023-11663-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11663-5

Navigation