Skip to main content
Log in

Experimental and theoretical investigation of palladium-doped zinc oxide nanorods for NO2 gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The high concentration of nitrogen dioxide (NO2) gets it one of the most popular and harmful air pollutants. This work examines the NO2 gas sensing properties of palladium-doped zinc oxide (Pd-ZnO) nanorods. The Pd-ZnO nanorods were synthesized by chemical hydrothermal method with different Pd doping concentrations (0–1 wt%). The Pd-ZnO nanorods were characterized by XRD, FESEM, and XPS for their structural and morphological properties, respectively. The ZnO nanostructures show hexagonal structures, and XRD and XPS results confirmed the doping of Pd on ZnO nanostructures. The Pd (1 wt%)-ZnO nanorods-based sensor shows high response of 22.1 with response/recovery time of 67/118 s toward 100 ppm NO2, while it exhibits a response of 7 with response/recovery times of 80/145 s for 1 ppm NO2, at 200 °C. The sensor is observed very selective for NO2 compared to other gases like carbon monoxide (CO), ammonia (NH3), and hydrogen (H2). The sensor has strong stability for a longer time (35 days) in a dry and humid (RH 60%) environment. The mechanism of gas sensors is further explained by the Crowell-Sze model in Finite-Difference Time-Domain (FDTD) simulation using COMSOL Multiphysics using drift Diffusion-Poisson equations to simulate the electric potential distribution in the nanorods during the gas sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. S. Tyagi, M. Chaudhary, A.K. Ambedkar, K. Sharma, Y.K. Gautam, B.P. Singh, Metal oxide nanomaterial-based sensors for monitoring environmental NO2 and its impact on the plant ecosystem: a review. Sens. Diagn. 1, 106–129 (2022)

    Article  CAS  Google Scholar 

  2. A. Sanger, S.B. Kang, M.H. Jeong, M.J. Im, I.Y. Choi, C.U. Kim et al., Morphology-controlled aluminum-doped zinc oxide nanofibers for highly sensitive NO2 sensors with full recovery at room temperature. Adv. Sci. 5, 1800816 (2018)

    Article  Google Scholar 

  3. J. Jaiswal, A. Sanger, P. Tiwari, R. Chandra, MoS2 hybrid heterostructure thin film decorated with CdTe quantum dots for room temperature NO2 gas sensor. Sens. Actuators, B Chem. 305, 127437 (2020)

    Article  CAS  Google Scholar 

  4. A. Sanger, P.K. Jain, Y.K. Mishra, R. Chandra, Palladium decorated silicon carbide nanocauliflowers for hydrogen gas sensing application. Sens. Actuators, B Chem. 242, 694–699 (2017)

    Article  CAS  Google Scholar 

  5. A. Sanger, A. Kumar, S. Chauhan, Y.K. Gautam, R. Chandra, Fast and reversible hydrogen sensing properties of Pd/Mg thin film modified by hydrophobic porous silicon substrate. Sens. Actuators, B Chem. 213, 252–260 (2015)

    Article  CAS  Google Scholar 

  6. A. Sanger, A. Kumar, A. Kumar, J. Jaiswal, R. Chandra, A fast response/recovery of hydrophobic Pd/V2O5 thin films for hydrogen gas sensing. Sens. Actuators, B Chem. 236, 16–26 (2016)

    Article  CAS  Google Scholar 

  7. M. Arif, A. Sanger, A. Singh, Highly sensitive NiO nanoparticle based chlorine gas sensor. J. Electron. Mater. 47, 3451–3458 (2018)

    Article  CAS  Google Scholar 

  8. A. Sanger, S.B. Kang, M.H. Jeong, C.U. Kim, J.M. Baik, K.J. Choi, All-transparent NO2 gas sensors based on freestanding Al-doped ZnO nanofibers. ACS Appl. Electron. Mater. 1, 1261–1268 (2019)

    Article  CAS  Google Scholar 

  9. R.D. Woodson, Chapter 8—OSHA regulations, in Construction hazardous materials compliance guide. ed. by R.D. Woodson (Butterworth-Heinemann, Boston, 2012), pp.115–143

    Chapter  Google Scholar 

  10. T. Zhou, T. Zhang, Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure–property-application relationship for gas sensors. Small Methods 5, 2100515 (2021)

    Article  CAS  Google Scholar 

  11. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)

    Article  CAS  Google Scholar 

  12. J. Xuan, G. Zhao, M. Sun, F. Jia, X. Wang, T. Zhou et al., Low-temperature operating ZnO-based NO2 sensors: a review. RSC Adv. 10, 39786–39807 (2020)

    Article  CAS  Google Scholar 

  13. Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics 360, 115544 (2021)

    Article  CAS  Google Scholar 

  14. M.A. Franco, P.P. Conti, R.S. Andre, D.S. Correa, A review on chemiresistive ZnO gas sensors. Sens. Actuators Rep. 4, 100100 (2022)

    Article  Google Scholar 

  15. A. Sanger, A. Kumar, A. Kumar, R. Chandra, Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls. Sens. Actuators, B Chem. 234, 8–14 (2016)

    Article  CAS  Google Scholar 

  16. A. Yu, Z. Li, J. Yi, Selective detection of parts-per-billion H2S with Pt-decorated ZnO nanorods. Sens. Actuators, B Chem. 333, 129545 (2021)

    Article  CAS  Google Scholar 

  17. P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens. Actuators, B Chem. 165, 133–142 (2012)

    Article  CAS  Google Scholar 

  18. Y.-H. Liu, S.-J. Chang, L.-T. Lai, Y.-P. Tu, S.-J. Young, Aluminum-doped zinc oxide nanorods and methyl alcohol gas sensor application. Microsyst. Technol. 28, 377–382 (2022)

    Article  CAS  Google Scholar 

  19. N.F. Idris, N.A. Mohd Yahya, M.H. Yaacob, A.H. Idris, S.W. Harun, N. Saidin, Optical fiber coated zinc oxide (ZnO) nanorods decorated with palladium (Pd) for hydrogen sensing. Opt. Mater. 96, 109291 (2019)

    Article  CAS  Google Scholar 

  20. M. Kamal Hossain, Q. Ahmed Drmosh, Noble Metal-decorated nanostructured zinc oxide: strategies to advance chemiresistive hydrogen gas sensing. Chem. Rec. 22, e202200090 (2022)

    Article  CAS  Google Scholar 

  21. P. Yadav, A. Kumar, A. Sanger, Y.K. Gautam, B.P. Singh, Sputter-Grown Pd-capped CuO thin films for a highly sensitive and selective hydrogen gas sensor. J. Electron. Mater. 50, 192–200 (2021)

    Article  CAS  Google Scholar 

  22. D.T. Thu, H.T. Hien, D.T.A. Thu, P.Q. Ngan, G.H. Thai, C.V. Tuan et al., Schottky contacts of (Au, Pt)/nanotube-titanates for fast response to NO2 gas at room temperature. Sens. Actuators, B Chem. 244, 941–948 (2017)

    Article  CAS  Google Scholar 

  23. C.R. Crowell, S.M. Sze, Current transport in metal-semiconductor barriers. Solid-State Electron. 9, 1035–1048 (1966)

    Article  CAS  Google Scholar 

  24. M. Hessien, E. Da’na, K. Al-Amer, M.M. Khalaf, Nano ZnO (hexagonal wurtzite) of different shapes under various conditions: fabrication and characterization. Mater. Res. Express 6, 085057 (2019)

    Article  CAS  Google Scholar 

  25. U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye–Scherrer equation.’ Nat. Nanotechnol. 6, 534 (2011)

    Article  CAS  Google Scholar 

  26. A.K. Ambedkar, M. Singh, V. Kumar, V. Kumar, B.P. Singh, A. Kumar et al., Structural, optical and thermoelectric properties of Al-doped ZnO thin films prepared by spray pyrolysis. Surf. Interfaces 19, 100504 (2020)

    Article  CAS  Google Scholar 

  27. P. Gunawan, L. Mei, J. Teo, J. Ma, J. Highfield, Q. Li et al., Ultrahigh sensitivity of Au/1D α-Fe2O3 to acetone and the sensing mechanism. Langmuir 28, 14090–14099 (2012)

    Article  CAS  Google Scholar 

  28. J. Sun, L. Sun, N. Han, J. Pan, W. Liu, S. Bai et al., Ordered mesoporous WO3/ZnO nanocomposites with isotype heterojunctions for sensitive detection of NO2. Sens. Actuators, B Chem. 285, 68–75 (2019)

    Article  CAS  Google Scholar 

  29. M.W. Ahn, K.S. Park, J.H. Heo, D.W. Kim, K.J. Choi, J.G. Park, On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens. Actuators, B Chem. 138, 168–173 (2009)

    Article  CAS  Google Scholar 

  30. N. Tamaekong, C. Liewhiran, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, NO2 sensing properties of flame-made MnOx-loaded ZnO-nanoparticle thick film. Sens. Actuators, B Chem. 204, 239–249 (2014)

    Article  CAS  Google Scholar 

  31. S.K. Shaikh, V.V. Ganbavle, S.I. Inamdar, K.Y. Rajpure, Multifunctional zinc oxide thin films for high-performance UV photodetectors and nitrogen dioxide gas sensors. RSC Adv. 6, 25641–25650 (2016)

    Article  CAS  Google Scholar 

  32. L. Chandra, P.K. Sahu, R. Dwivedi, V.N. Mishra, Electrical and NO2 sensing characteristics of Pd/ZnO nanoparticles based Schottky diode at room temperature. Mater. Res. Express 4, 125017 (2017)

    Article  Google Scholar 

  33. T.V.A. Kusumam, V.S. Siril, K.N. Madhusoodanan, M. Prashantkumar, Y.T. Ravikiran, N.K. Renuka, NO2 gas sensing performance of zinc oxide nanostructures synthesized by surfactant assisted Low temperature hydrothermal technique. Sens. Actuators, A 318, 112389 (2021)

    Article  CAS  Google Scholar 

  34. J.X. Wang, X.W. Sun, Y. Yang, C.M. Wu, N-P transition sensing behaviors of ZnO nanotubes exposed to NO2 gas. Nanotechnology 20, 465501 (2009)

    Article  CAS  Google Scholar 

  35. S. Tyagi, A. Kumar, A. Kumar, Y.K. Gautam, V. Kumar, Y. Kumar et al., Enhancement in the sensitivity and selectivity of Cu functionalized MoS2 nanoworm thin films for nitrogen dioxide gas sensor. Mater. Res. Bull. 150, 111784 (2022)

    Article  CAS  Google Scholar 

  36. S.-W. Choi, S.-H. Jung, S.S. Kim, Functionalization of selectively grown networked SnO2 nanowires with Pd nanodots by γ-ray radiolysis. Nanotechnology 22, 225501 (2011)

    Article  Google Scholar 

  37. C.-M. Chang, M.-H. Hon, I.-C. Leu, Improvement in CO sensing characteristics by decorating ZnO nanorod arrays with Pd nanoparticles and the related mechanisms. RSC Adv. 2, 2469–2475 (2012)

    Article  CAS  Google Scholar 

  38. C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 3648–3650 (2002)

    Article  CAS  Google Scholar 

  39. H. Lee, M. Shin, M. Lee, Y.J. Hwang, Photo-oxidation activities on Pd-doped TiO2 nanoparticles: critical PdO formation effect. Appl. Catal. B 165, 20–26 (2015)

    Article  CAS  Google Scholar 

  40. J. Rogal, K. Reuter, M. Scheffler, Thermodynamic stability of PdO surfaces. Phys. Rev. B 69, 075421 (2004)

    Article  Google Scholar 

  41. A.A. Zhukova, M.N. Rumyantseva, V.B. Zaytsev, A.V. Zaytseva, A.M. Abakumov, A.M. Gaskov, Pd nanoparticles on SnO2(Sb) whiskers: aggregation and reactivity in CO detection. J. Alloy. Compd. 565, 6–10 (2013)

    Article  CAS  Google Scholar 

  42. A. Oprea, D. Degler, N. Barsan, A. Hemeryck, J. Rebholz, 3—Basics of semiconducting metal oxide–based gas sensors, in Gas sensors based on conducting metal oxides. ed. by N. Barsan, K. Schierbaum (Elsevier, Amsterdam, 2019), pp.61–165

    Chapter  Google Scholar 

  43. S. Roso, F. Güell, P.R. Martínez-Alanis, A. Urakawa, E. Llobet, Synthesis of ZnO nanowires and impacts of their orientation and defects on their gas sensing properties. Sens. Actuators, B Chem. 230, 109–114 (2016)

    Article  CAS  Google Scholar 

  44. P. Rai, S. Raj, K.-J. Ko, K.-K. Park, Y.-T. Yu, Synthesis of flower-like ZnO microstructures for gas sensor applications. Sens. Actuators, B Chem. 178, 107–112 (2013)

    Article  CAS  Google Scholar 

  45. C. Jin, S. Park, H. Kim, C. Lee, Ultrasensitive multiple networked Ga2O3-core/ZnO-shell nanorod gas sensors. Sens. Actuators, B Chem. 161, 223–228 (2012)

    Article  CAS  Google Scholar 

  46. V.V. Ganbavle, S.I. Inamdar, G.L. Agawane, J.H. Kim, K.Y. Rajpure, Synthesis of fast response, highly sensitive and selective Ni:ZnO based NO2 sensor. Chem. Eng. J. 286, 36–47 (2016)

    Article  CAS  Google Scholar 

  47. V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sens. Actuators, B Chem. 239, 1185–1193 (2017)

    Article  CAS  Google Scholar 

  48. C. Xiao, T. Yang, M. Chuai, B. Xiao, M. Zhang, Synthesis of ZnO nanosheet arrays with exposed (100) facets for gas sensing applications. Phys. Chem. Chem. Phys. 18, 325–330 (2016)

    Article  CAS  Google Scholar 

  49. C.W. Zou, J. Wang, W. Xie, Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites. J. Colloid Interface Sci. 478, 22–28 (2016)

    Article  CAS  Google Scholar 

  50. H.W. Kim, Y.J. Kwon, A. Mirzaei, S.Y. Kang, M.S. Choi, J.H. Bang et al., Synthesis of zinc oxide semiconductors-graphene nanocomposites by microwave irradiation for application to gas sensors. Sens. Actuators, B Chem. 249, 590–601 (2017)

    Article  CAS  Google Scholar 

  51. C. Zou, F. Liang, S. Xue, Synthesis and oxygen vacancy related NO2 gas sensing properties of ZnO: Co nanorods arrays gown by a hydrothermal method. Appl. Surf. Sci. 353, 1061–1069 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Prof. Ramesh Chandra, IIC, IIT Roorkee, and India for providing FESEM & XRD facilities. The authors would like to thank CCS University Meerut [(DEV/URGS/2022-23/39)] for supporting this research work. Author Mr. Durvesh Gautam also thank to CSIR-SRF (1620/CSIR NET June 2019) New Delhi, India. Dr. Ashwani Kumar extends sincere appreciation to CSIR-SRA (Pool Scientist), New Delhi, for their generous financial support (Grant No. 13(9131)-A/2020-Pool), which facilitated the completion of this research endeavor.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AKA contributed toward investigation, and writing-original draft; DKG contributed toward methodology, and writing-review & editing; MS contributed toward writing-review & editing and resources; SV contributed toward conceptualization and methodology; BPS contributed toward investigation, and writing-review & editing; AKM contributed toward data curation, and software; SBK contributed toward software and formal analysis; AK contributed toward writing-original draft and supervision; AS contributed toward writing-review & editing and supervision; and YKG contributed toward resources, investigation, and supervision.

Corresponding authors

Correspondence to Ashwani Kumar, Amit Sanger or Yogendra K. Gautam.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest regarding the research work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 829 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambedkar, A.K., Gautam, D., Singh, M. et al. Experimental and theoretical investigation of palladium-doped zinc oxide nanorods for NO2 gas sensor. J Mater Sci: Mater Electron 34, 2213 (2023). https://doi.org/10.1007/s10854-023-11657-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11657-3

Navigation