Skip to main content
Log in

ZIF-derived nanoparticles modified ZnO nanorods hierarchical structure for conductometric NO2 gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nitrogen oxide (NO2) pollution mainly comes from automobile exhaust and industrial production. It has drawn much attention in recent years, however, selectivity and sensitivity still need to be improved for metal oxide gas sensors. In this paper, a gas-sensitive material with a nanoparticle-nanorod hierarchical structure are designed to improve the receptor function of the NO2 gas sensor. ZIF-8 layer is in situ coated on the surface of ZnO nanorods. The ZnO nanorod as a central supporting backbone, and ZnO nanocrystalline derived from ZIF-8 attached to ZnO nanorods could adsorb more NO2 molecules. The sensing experiments demonstrate that ZnO nanorods decorated with ZIF-8 derived nanoparticles exhibited better selectivity and sensitivity of about 16.3 for 1 ppm NO2 at 200 °C than pure ZnO nanorods. The selectivity and moisture resistance are investigated. The desirable NO2 sensing mechanism is investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. T. Olaniyan, M. Jeebhay, M. Roosli et al., Environ. Res. 186, 109606 (2020). https://doi.org/10.1016/j.envres.2020.109606

    Article  CAS  Google Scholar 

  2. M.W. Ahn, K.S. Park, J.H. Heo, D.W. Kim, K.J. Choi, J.G. Park, Sens. Actuators B: Chem. 138, 168 (2009). https://doi.org/10.1016/j.snb.2009.02.008

    Article  CAS  Google Scholar 

  3. J. Sun, L. Sun, N. Han et al., Sens. Actuators B: Chem. 285, 68 (2019). https://doi.org/10.1016/j.snb.2018.12.089

    Article  CAS  Google Scholar 

  4. X. Zheng, C. Zhang, J. Xia et al., J. Mater. Sci. 54, 5311 (2019). https://doi.org/10.1007/s10853-018-03189-7

    Article  CAS  Google Scholar 

  5. A. Sharma, M. Tomar, Sens. Actuators B: Chem. 176, 675 (2013). https://doi.org/10.1016/j.snb.2012.09.094

    Article  CAS  Google Scholar 

  6. Y. Masuda, Sens. Actuators B: Chem. 364, 100116 (2022). https://doi.org/10.1016/j.snb.2022.131876

    Article  CAS  Google Scholar 

  7. S. Wang, M. Xu, T. Peng et al., Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-08651-x

    Article  Google Scholar 

  8. M. Gao, L. Zhu, W.L. Ong, J. Wang, G.W. Ho, Catal. Sci. Technol. 5, 4703 (2015). https://doi.org/10.1039/c5cy00879d

    Article  CAS  Google Scholar 

  9. J. Gonzalez-Chavarri, L. Parellada-Monreal, I. Castro-Hurtado, E. Castaño, Sens. Actuators B: Chem. 255, 1244 (2018). https://doi.org/10.1016/j.snb.2017.08.094

    Article  CAS  Google Scholar 

  10. H. Wang, M. Dai, Y. Li et al., Sens. Actuators B: Chem. 329, 129145 (2021). https://doi.org/10.1016/j.snb.2020.129145

    Article  CAS  Google Scholar 

  11. J. Hu, J. Pan, F. Zhu, H. Gong, J. Appl. Phys. 95, 6273 (2004). https://doi.org/10.1063/1.1719268

    Article  CAS  Google Scholar 

  12. J. Hu, F. Zhu, J. Zhang, H. Gong, Sens. Actuators B: Chem. 93, 175 (2003). https://doi.org/10.1016/s0925-4005(03)00186-2

    Article  CAS  Google Scholar 

  13. S. Park, S. Kim, H. Kheel, C. Lee, Sens. Actuators B: Chem. 222, 1193 (2016). https://doi.org/10.1016/j.snb.2015.08.006

    Article  CAS  Google Scholar 

  14. J. Tan, S. Hussain, C. Ge et al., Sens. Actuators B: Chem. 303, 127251 (2020). https://doi.org/10.1016/j.snb.2019.127251

    Article  CAS  Google Scholar 

  15. S. Bai, X. Liu, D. Li, S. Chen, R. Luo, A. Chen, Sens. Actuators B: Chem. 153, 110 (2011). https://doi.org/10.1016/j.snb.2010.10.010

    Article  CAS  Google Scholar 

  16. L.-J. Bie, X.-N. Yan, J. Yin, Y.-Q. Duan, Z.-H. Yuan, Sens. Actuators B: Chem. 126, 604 (2007). https://doi.org/10.1016/j.snb.2007.04.011

    Article  CAS  Google Scholar 

  17. Z.U. Abideen, J.-H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Sens. Actuators B: Chem. 255, 1884 (2018). https://doi.org/10.1016/j.snb.2017.08.210

    Article  CAS  Google Scholar 

  18. B. Nam, T.-K. Ko, S.-K. Hyun, Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.144104

    Article  Google Scholar 

  19. M. Kaur, S. Kailasaganapathi, N. Ramgir et al., Appl. Surf. Sci. 394, 258 (2017). https://doi.org/10.1016/j.apsusc.2016.10.085

    Article  CAS  Google Scholar 

  20. X. Chen, Y. Shen, P. Zhou et al., Sens. Actuators B: Chem. 280, 151 (2019). https://doi.org/10.1016/j.snb.2018.10.063

    Article  CAS  Google Scholar 

  21. D.V. Ponnuvelu, B. Pullithadathil, A.K. Prasad et al., Appl. Surf. Sci. 355, 726 (2015). https://doi.org/10.1016/j.apsusc.2015.07.143

    Article  CAS  Google Scholar 

  22. S. Bai, H. Fu, Y. Zhao et al., Sens. Actuators B: Chem. 266, 692 (2018). https://doi.org/10.1016/j.snb.2018.03.055

    Article  CAS  Google Scholar 

  23. H. Yuan, S. Aljneibi, J. Yuan et al., Adv. Mater. 31, e1807161 (2019). https://doi.org/10.1002/adma.201807161

    Article  CAS  Google Scholar 

  24. M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R. Silva, Nanoscale 6, 235 (2014). https://doi.org/10.1039/c3nr04519f

    Article  CAS  Google Scholar 

  25. Y. Dong, J. Li, L. Zhang, Sens. Actuators B: Chem. 303, 127208 (2020). https://doi.org/10.1016/j.snb.2019.127208

    Article  CAS  Google Scholar 

  26. X.-F. Wang, X.-Z. Song, K.-M. Sun, L. Cheng, W Ma, Polyhedron 152, 155 (2018). https://doi.org/10.1016/j.poly.2018.06.037

    Article  CAS  Google Scholar 

  27. S.Y. Jeong, J.S. Kim, J.H. Lee, Adv. Mater. 32, e2002075 (2020). https://doi.org/10.1002/adma.202002075

    Article  CAS  Google Scholar 

  28. R. Chen, J. Yao, Q. Gu et al., Chem. Commun. (Cambridge) 49, 9500 (2013). https://doi.org/10.1039/c3cc44342f

    Article  CAS  Google Scholar 

  29. L. Chen, J.W. Ye, H.P. Wang et al., Nat. Commun. 8, 15985 (2017). https://doi.org/10.1038/ncomms15985

    Article  CAS  Google Scholar 

  30. X. Yang, L. Qiu, RSC Adv. 8, 4890 (2018). https://doi.org/10.1039/c7ra13351k

    Article  CAS  Google Scholar 

  31. Y. Xiong, W. Xu, Z. Zhu et al., Sens. Actuators B: Chem. 253, 523 (2017). https://doi.org/10.1016/j.snb.2017.06.169

    Article  CAS  Google Scholar 

  32. J. Yang, F. Zhang, H. Lu et al., Angew Chem. Int. Ed. 54, 10889 (2015). https://doi.org/10.1002/anie.201504242

    Article  CAS  Google Scholar 

  33. D. Liu, Z. Tang, Z. Zhang, Sens. Actuators B: Chem. 324, 128754 (2020). https://doi.org/10.1016/j.snb.2020.128754

    Article  CAS  Google Scholar 

  34. S.A. Vanalakar, V.L. Patil, N.S. Harale et al., Sens. Actuators B: Chem. 221, 1195 (2015). https://doi.org/10.1016/j.snb.2015.07.084

    Article  CAS  Google Scholar 

  35. X. Chen, Y. Shen, P. Zhou et al., Sens. Actuators B: Chem. 289, 160 (2019). https://doi.org/10.1016/j.snb.2019.03.095

    Article  CAS  Google Scholar 

  36. X. Geng, P. Lu, C. Zhang, D. Lahem, M.-G. Olivier, M. Debliquy, Sens. Actuators B: Chem. 282, 690 (2019). https://doi.org/10.1016/j.snb.2018.11.123

    Article  CAS  Google Scholar 

  37. J. Low, B. Dai, T. Tong, C. Jiang, Adv. Mater. 31, e1802981 (2019). https://doi.org/10.1002/adma.201802981

    Article  CAS  Google Scholar 

  38. J. Kang, W. Koo, J. Jang et al., Sens. Actuators B: Chem. 331, 129371 (2021). https://doi.org/10.1016/j.snb.2020.129371

    Article  CAS  Google Scholar 

  39. J.-H. Lee, Sens. Actuators B: Chem. 140, 319 (2009). https://doi.org/10.1016/j.snb.2009.04.026

    Article  CAS  Google Scholar 

  40. S. Park, H. Ko, S. Kim, C. Lee, ACS Appl. Mater. Interfaces 6, 9595 (2014). https://doi.org/10.1021/am501975v

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (Nos. 51772163 and 51472137).

Author information

Authors and Affiliations

Authors

Contributions

XR: Conceptualization, Formal analysis, Data curation, Investigation, Methodology, Writing—original draft preparation, Writing—review & editing, Validation. ZZ: Supervision. ZT: Resources, Writing-review & editing, Project administration, Funding acquisition.

Corresponding author

Correspondence to Zilong Tang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Zhang, Z. & Tang, Z. ZIF-derived nanoparticles modified ZnO nanorods hierarchical structure for conductometric NO2 gas sensor. J Mater Sci: Mater Electron 34, 648 (2023). https://doi.org/10.1007/s10854-023-10002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10002-y

Navigation