Skip to main content
Log in

Structural and magnetic behaviors of Fe-based glassy alloys prepared by industrial raw materials and different processing routes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three types of Fe-based metallic glass alloys with nominal compositions of Fe74.5B5Si2C4P10Cr2Mo2Mn0.5(#A1), Fe73.5B5Si3C4P10Cr2Mo2Mn0.5(#A2), and Fe72.5B6Si3C4P10Cr2Mo2Mn0.5(#A3) are developed using commercial pure raw materials in the forms of ribbon, rod, and powder. The structural and thermal properties are investigated by X-ray diffractometer (XRD) and differential scanning calorimetry (DSC), respectively. The alloy #A1 displays complete crystallinity in powder form while dispersion of crystallites in amorphous matrix found in ribbon and rod. The replacement of Fe by Si in #A1 causes complete amorphous structure for all forms of alloy #A2 and ribbon and rods of alloy #A3. More B atoms in alloy #A3 enhance glass transition and crystallization temperatures than alloys #A1 and #A2. The additional B and Si atoms in #A2 and #A3 influence the lowering of saturation magnetization compared to alloy #A1. However, the alloy #A3 possess the lowest coercivity, sustaining its good magnetic softness even after post-annealing at 770 K. The optimized composition in alloy #A3 is found with high amorphous-forming ability and good sphericity in powders, which would be beneficial for improving the alloy performance at further processing like additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. El-Refaie, M. Osama, High specific power electrical machines: a system perspective. CES Trans. Electr. Mach. Syst. 3, 88–93 (2019). https://doi.org/10.30941/CESTEMS.2019.00012

    Article  Google Scholar 

  2. J.M. Park, J.H. Na, D.H. Kim, K.B. Kim, N. Mattern, U. Kühn, J. Eckert, Medium range ordering and its effect on plasticity of Fe–Mn–B–Y–Nb bulk metallic glass. Phil. Mag. 90, 2619–2633 (2010). https://doi.org/10.1080/14786431003662556

    Article  CAS  Google Scholar 

  3. M. Stoica, K. Hajlaoui, A. LeMoulec, A.R. Yavari, New Ternary Febased bulk metallic glass with high boron content. Phil.Mag. Lett. 86, 267–275 (2006). https://doi.org/10.1080/09500830600696344

    Article  CAS  Google Scholar 

  4. Y. Wu, H.X. Li, Z.B. Jiao, J.E. Gao, Z.P. Lu, Size effects on the compressive deformation behaviour of a brittle Fe-based bulk metallic glass. Phil. Mag. Lett. 90, 403–412 (2010). https://doi.org/10.1080/09500831003705344

    Article  CAS  Google Scholar 

  5. Y. Liu, Y. Yi, W. Shao, Y. Shao, Microstructure and magnetic properties of soft magnetic powder cores of amorphous and nanocrystalline alloys. J. Mag. Magn. Mater. 330, 119–133 (2013). https://doi.org/10.1016/j.jmmm.2012.10.043

    Article  CAS  Google Scholar 

  6. V.V. Popov, M.L. Grilli, A. Koptyug, L. Jaworska, A. Katz-Demyanetz, D. Klobčar, S. Goel, Powder bed fusion additive manufacturing using critical raw materials: a review. Materials. 14, 909 (2021). https://doi.org/10.3390/ma14040909

    Article  CAS  Google Scholar 

  7. J.C. Kim, H.J. Ryu, J.S. Kim, B.K. Kim, Y.J. Kim, H.J. Kim, Synthesis and densification of Cu added Fe-based BMG composite powders by gas atomization and electrical Explosion of wire. J. Alloys Comp. 483, 28–31 (2009). https://doi.org/10.1016/j.jallcom.2008.08.109

    Article  CAS  Google Scholar 

  8. Y. Shi, W. Lu, W. Sun, S. Zhang, B. Yang, J. Wang, Impact of gas pressure on particle feature in Fe-based amorphous alloy powders via gas atomization: Simulation and experiment. J. Mater. Sci. Tech. 105, 203–213 (2022). https://doi.org/10.1016/j.jmst.2021.06.075

    Article  CAS  Google Scholar 

  9. I. Otsuka, K. Wada, Y. Maeta, T. Kadomura, M. Yagi, Magnetic properties of Fe-Based amorphous powders with high-saturation induction produced by Spinning Water atomization process (SWAP). IEEE Trans. Magn. 44, 3891–3894 (2008). https://doi.org/10.1109/TMAG.2008.2002249

    Article  CAS  Google Scholar 

  10. J. Liu, Y. Dong, Z. Zhu, J.H. Pang, P. Wang, J. Zhang, Fe-based amorphous magnetic powder cores with low core loss fabricated by Novel gas–water combined atomization powders. Materials 15, 6296 (2022). https://doi.org/10.3390/ma15186296

    Article  CAS  Google Scholar 

  11. T.H. Kim, K.K. Jee, B.K. Yoon, D.J. Byun, J.H. Han, High-frequency magnetic properties of soft magnetic cores based on nanocrystalline alloy powder prepared by thermal oxidation. J. Mag. Magn. Mater. 322, 2423–2427 (2010). https://doi.org/10.1016/j.jmmm.2010.02.050

    Article  CAS  Google Scholar 

  12. Y. Zhang, Y. Dong, L. Liu, L. Chang, B. Zhou, Q. Chi, X. Wang, High filling alumina/epoxy nanocomposite as coating layer for Fe-based amorphous powder cores with enhanced magnetic performance. J. Mater. Sci. 30, 1486–1487 (2019). https://doi.org/10.1007/s10854-019-01858-0

    Article  CAS  Google Scholar 

  13. J. Huang, L. Jiao, Y. Yang, Y. Dong, Y. Zhang, L. Chang, M. Gong, J. Li, A. He, X. Wang, Fe-6.5 wt%Si powder cores with low core loss by optimizing particle size distribution. Metals 10, 1699 (2020). https://doi.org/10.3390/met10121699

    Article  CAS  Google Scholar 

  14. Z. Mahbooba, L. Thorsson, M. Unosson, P. Skoglund, H. West, T. Horn, C. Rock, E. Vogli, O. Harrysson, Appl. Mater. Today 11, 264–269 (2018). https://doi.org/10.1016/j.apmt.2018.02.011

    Article  Google Scholar 

  15. M.G. Ozden, N.A. Morley, Laser Additive Manufacturing of Fe-Based magnetic amorphous alloys. Magnetochemistry. 7, 20 (2021). https://doi.org/10.3390/magnetochemistry7020020

    Article  CAS  Google Scholar 

  16. D. Ouyang, W. Xing, N. Li, Y. Li, L. Liu, Structural evolutions in 3D-printed Fe-based metallic glass fabricated by selective laser melting. Addit. Manuf. 23, 246–252 (2018). https://doi.org/10.1016/j.addma.2018.08.020

    Article  CAS  Google Scholar 

  17. N. Lamichhane, L. Sethuraman, A. Dalagan, H. Wang, J. Keller, M.P. Paranthama, Additive manufacturing of soft magnets for electrical machines—a review. Mater. Today Phys. 15, 100255 (2020). https://doi.org/10.1016/j.mtphys.2020.100255

    Article  Google Scholar 

  18. C. Suryanarayana, A. Inoue, Int. Mater. Rev. 58, 131–166 (2013). https://doi.org/10.1179/1743280412Y.0000000007. Iron-based bulk metallic glasses

    Article  CAS  Google Scholar 

  19. B. Shen, M. Akiba, A. Inoue, Effects of Si and Mo additions on glass-forming in bulk glassy alloys with high saturation magnetization. Phys. Rev. B 73, 104204 (2006). https://doi.org/10.1103/PhysRevB.73.104204

    Article  CAS  Google Scholar 

  20. B. Shen, A. Inoue, Effect of Ga addition on the glass-forming ability of Fe-based bulk glassy alloy. J. Mater. Sci. Lett. 22, 857 (2003)

    Article  CAS  Google Scholar 

  21. F. Li, B. Shen, A. Makino, A. Inoue, Excellent soft-magnetic properties of (Fe,Co)–Mo–(P,C,B,Si) bulk glassy alloys with ductile deformation behavior. App. Phy. Lett. 91, 234101 (2007). https://doi.org/10.1063/1.2820608

    Article  CAS  Google Scholar 

  22. H.X. Li, J.E. Gao, Z.B. Jiao, Y. Wu, Z.P. Lu, Glass-forming ability enhanced by proper additions of oxygen in a Fe-based bulk metallic glass. Appl. Phys. Lett. 56, 1035 (2009). https://doi.org/10.1063/1.3248186

    Article  CAS  Google Scholar 

  23. Y. Fu, B. Shen, H. Kimura, A. Makino, A. Inoue, Enhanced glass-forming ability of FeCoBSiNb bulk glassy alloys prepared using commercial raw materials through the optimization of nb content. J. Appl. Phys. 107, 09A315 (2010). https://doi.org/10.1063/1.3350898

    Article  CAS  Google Scholar 

  24. H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, Z.P. Lu, Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications. Prog. Mater. Sci. 103, 235–318 (2019). https://doi.org/10.1016/j.pmatsci.2019.01.003

    Article  CAS  Google Scholar 

  25. Y. Jiang, S. Jia, S. Chen, X. Li, L. Wang, X. Han, Theoretical prediction and experimental validation of the Glass-Forming ability and magnetic properties of Fe-Si-B Metallic glasses from Atomic structures. Materials. 15, 3149 (2022). https://doi.org/10.3390/ma15093149

    Article  CAS  Google Scholar 

  26. P. Sarkar, R.K. Roy, A.K. Panda, A. Mitra, Optimization of process parameters for developing FeCoSiB amorphous microwires through in-rotating-water quenching technique. Appl. Phys. A 111, 575–580 (2013). https://doi.org/10.1007/s00339-012-7260-4

    Article  CAS  Google Scholar 

  27. E.J. Lavernia, T.S. Srivatsan, The rapid solidification processing of materials: science, principles, technology, advances, and applications. J. Mat. Sci. 45, 287–325 (2010). https://doi.org/10.1007/s10853-009-3995-5

    Article  CAS  Google Scholar 

  28. A. Inoue, B.L. Shen, C.T. Chang, Fe- and co-based bulk glassy alloys with ultrahigh strength of over 4000 MPa. Intermetallics 14, 936–944 (2006). https://doi.org/10.1016/j.intermet.2006.01.038

    Article  CAS  Google Scholar 

  29. B.S. Patial, N. Thakur, Tripathi,on the variation of activation energy for amorphous–crystallization phase transition in Se–Te–Sn chalcogenide glasses using iso-conversional analysis. Phase Trans. 90, 1101–1111 (2017). https://doi.org/10.1080/01411594.2017.1318442

    Article  CAS  Google Scholar 

  30. B.S. Patial, N. Thakur, S.K. Tripathi, Crystallization study of sn additive Se–Te chalcogenide alloys. J. Therm. Anal. Calorim. 106, 845–852 (2011). https://doi.org/10.1007/s10973-011-1579-5

    Article  CAS  Google Scholar 

  31. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957). https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  32. D. Turnbull, Under what conditions can a glass be formed. Contemp. Phys. 10, 473–488 (1969). https://doi.org/10.1080/00107516908204405

    Article  CAS  Google Scholar 

  33. Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glass. Acta Mater. 50, 3501–3512 (2002). https://doi.org/10.1016/S1359-6454(02)00166-0

    Article  CAS  Google Scholar 

  34. B.S. Patial, Calorimetry to Understand Structural Relaxation in Chalcogenide Glasses, in Applications of Calorimetry. ed. by J.L. Rivera-Armenta, C.G. Flores-Hernández (Intech Open, London, 1973), p.307. https://doi.org/10.5772/intechopen.104418

    Chapter  Google Scholar 

  35. Y.G. Nam, B. Koo, M.S. Chang, S. Yang, J. Yu, Y.H. Park, Jeong, elective laser melting vitrification of amorphous soft magnetic alloys with help of double-scanning-induced compositional homogeneity. Mater. Lett. 261, 127068 (2020). https://doi.org/10.1016/j.matlet.2019.127068

    Article  CAS  Google Scholar 

  36. H. Chen, B. Dong, S. Zhou, X. Li, J. Qin, Structural, magnetic, and electronic properties of Fe82Si4B10P4 metallic glass. Sci. Rep. 8, 5680 (2018). https://doi.org/10.1038/s41598-018-23952-9

    Article  CAS  Google Scholar 

  37. R.M. Bozorth, Ferromagnetism (Wiley-IEEE Press, Piscataway, 1978), pp.423–430

    Google Scholar 

  38. K. Narita, H. Fukunaga, J. Yamasaki, Effect of metalloid content on Curie temperature and magnetic moment of amorphous Fe–Si–B alloys. Jpn. J. Appl. Phys. 16, 2063–2064 (1977)

    Article  CAS  Google Scholar 

  39. S. Yue, H. Zhang, R. Cheng, A. Wang, Y. Dong, A. He, H. Ni, C.T. Liu, Magnetic and thermal stabilities of FeSiB eutectic amorphous alloys: compositional effects. J. Alloys Comp. 776, 833–838 (2019). https://doi.org/10.1016/j.jallcom.2018.10.331

    Article  CAS  Google Scholar 

  40. D. Goll et al., Additive manufacturing of soft magnetic materials and components. Addit. Manuf. 27, 428–439 (2019). https://doi.org/10.1016/j.addma.2019.02.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director, CSIR-NML, Jamshedpur, for giving permission for this publication. CSIR-NML in-house project (OLP0398) is highly acknowledged for financial support of this investigation.

Funding

This work was supported by CSIR-NML in-house project (OLP0398).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by RKR, PM, GKB, KGK, and AKP. The first draft of the manuscript was written by RKR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajat K. Roy.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, R.K., Murugaiyan, P., Bansal, G.K. et al. Structural and magnetic behaviors of Fe-based glassy alloys prepared by industrial raw materials and different processing routes. J Mater Sci: Mater Electron 34, 2218 (2023). https://doi.org/10.1007/s10854-023-11650-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11650-w

Navigation