Skip to main content
Log in

Effect of structural alignment on the electrochemical performance of reduced graphene oxide-single-walled carbon nanotube hybrid for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Although the graphene-carbon nanotube(G-CNT) hybrid has attracted much attention in energy storage research, it has the limitation of low volumetric capacitance due to its agglomerated structure. So, optimizing its structural parameter is the key to achieving high performance. Herein, described the preparation and characterization of vertically aligned single-walled carbon nanotube-reduced graphene oxide (VCNT-RGO) hybrid and the effect of structural alignment on the electrochemical performance. The structural morphology of the hybrids was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The influence of the alignment of the hybrid on electrochemical performance was investigated using cyclic voltammetry and charge–discharge curves. Consequently, the hybrid with vertically aligned structure VCNT-RGO delivers an areal capacitance of 204.9 F/g at a scan rate of 5 mV/s and specific capacitance of 117.1 F/g at 1 A/g current density with a high energy density of 25.4 Wh/kg and a power density 625 W/kg which is 1.6 times higher than that of unorganized hybrid CNT-RGO of 112.8 F/g areal capacitance at a scan rate of 5 mV/s and 72.5 F/g specific capacitance at 1 A/g current density, in 1 M KOH aqueous solution. Moreover, the VCNT-RGO hybrid shows good stability after 2000 long cycles at a current density of 5 A/g with capacitance retention of 84%. These results suggest that the vertically aligned hierarchical network improved charge transport efficiency by providing more surface area for interaction. This work paves a feasible pathway to prepare 3D carbon nanohybrid architecture for high performance in energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The database generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Korkmaz, A. Kariper, J. Energy Storage (2020). https://doi.org/10.1016/j.est.2019.101038

    Article  Google Scholar 

  2. N.S. Shaikh, S.B. Ubale, V.J. Mane, J.S. Shaikh, V.C. Lokhande, S. Praserthdam, C.D. Lokhande, P. Kanjanaboos, J. Alloys Compd. 893, 161998 (2022). https://doi.org/10.1016/j.jallcom.2021.161998

    Article  CAS  Google Scholar 

  3. A. Wicaksana, T. Rachman, Angew. Chemie Int. Ed. 6(11), 951–952 (2018)

    Google Scholar 

  4. D. Li, H. Guo, S. Jiang, G. Zeng, W. Zhou, Z. Li, New. J. Chem. 45, 19446 (2021). https://doi.org/10.1039/d1nj03740d

    Article  CAS  Google Scholar 

  5. X. Wen, J. Luo, K. Xiang, W. Zhou, C. Zhang, H. Chen, Chem. Eng. J. 458, 141381 (2023). https://doi.org/10.1016/j.cej.2023.141381

    Article  CAS  Google Scholar 

  6. V.D. Nithya, J. Energy Storage. 44, 103380 (2021). https://doi.org/10.1016/j.est.2021.103380

    Article  Google Scholar 

  7. L. Li, J.S. Nam, M.S. Kim, Y. Wang, S. Jiang, H. Hou, I. Kim, Adv. Energy Mater. 13, 2302139 (2023). https://doi.org/10.1002/aenm.202302139

    Article  CAS  Google Scholar 

  8. W. Deng, Y. Xu, X. Zhang, C. Li, Y. Liu, K. Xiang, H, and, Chen, J. Alloys Compd. 903, 163824 (2022). https://doi.org/10.1016/j.jallcom.2022.163824

    Article  CAS  Google Scholar 

  9. W.N. Deng, Y.H. Li, D.F. Xu, W. Zhou, K.X. Xiang, H. Chen, Rare Met. 41, 3432–3445 (2023). https://doi.org/10.1007/s12598-022-02022-0

    Article  CAS  Google Scholar 

  10. Z. Guo, X. Han, C. Zhang, S. He, K. Liu, J. Hu, W. Yang, S. Jian, S. Jiang, G. Duan, Chin. Chem. Lett. (2023). https://doi.org/10.1016/j.cclet.2023.109007

    Article  Google Scholar 

  11. X. Yang, J. Zhu, L. Qiu, D. Li, Adv. Mater. 23, 2833 (2011). https://doi.org/10.1002/adma.201100261

    Article  CAS  Google Scholar 

  12. A. Bouzina, H. Perrot, O. Sel, C. Debiemme-Chouvy, ACS Appl. Nano Mater. 4, 4964 (2021). https://doi.org/10.1021/acsanm.1c00489

    Article  CAS  Google Scholar 

  13. J.H. Jeong, Y.H. Kim, K.C. Roh, K.B. Kim, Carbon N. Y. 150, 128 (2019). https://doi.org/10.1016/j.carbon.2019.05.014

    Article  CAS  Google Scholar 

  14. A. Farahani, H. Sereshti, Int. J. Electrochem. Sci. 14, 6195 (2019). https://doi.org/10.20964/2019.07.47

    Article  CAS  Google Scholar 

  15. Z. Chen, T. Lv, Y. Yao, H. Li, N. Li, Y. Yang, K. Liu, G. Qian, X. Wang, T. Chen, J. Mater. Chem. A 7, 24792 (2019). https://doi.org/10.1039/c9ta10073c

    Article  CAS  Google Scholar 

  16. M. Etesami, M.T. Nguyen, T. Yonezawa, A. Tuantranont, A. Somwangthanaroj, S. Kheawhom, Chem. Eng. J. 446, 137190 (2022). https://doi.org/10.1016/j.cej.2022.137190

    Article  CAS  Google Scholar 

  17. X. Wu, F. Mu, H. Zhao, J. Mater. Sci. Technol. 55, 16 (2020). https://doi.org/10.1016/j.jmst.2019.05.063

    Article  CAS  Google Scholar 

  18. J. Jyoti, T.K. Gupta, B.P. Singh, M. Sandhu, S.K. Tripathi, J. Energy Storage. 50, 104235 (2022). https://doi.org/10.1016/j.est.2022.104235

    Article  Google Scholar 

  19. X. Hu, H. Wei, J. Liu, J. Zhang, X. Chi, P. Jiang, L. Sun, Adv. Mater. 31, 1 (2019). https://doi.org/10.1002/adma.201804918

    Article  CAS  Google Scholar 

  20. D.T. Pham, T.H. Lee, D.H. Luong, F. Yao, A. Ghosh, V.T. Le, T.H. Kim, B. Li, J. Chang, Y.H. Lee, ACS Nano. 9, 2018 (2015). https://doi.org/10.1021/nn507079x

    Article  CAS  Google Scholar 

  21. F. Lv, M. Qin, F. Zhang, H. Yu, L. Gao, P. Lv, W. Wei, Y. Feng, W. Feng, Carbon N. Y. 149, 281 (2019). https://doi.org/10.1016/j.carbon.2019.04.043

    Article  CAS  Google Scholar 

  22. T. Xu, D. Yang, Z. Fan, X. Li, Y. Liu, C. Guo, M. Zhang, Z.Z. Yu, Carbon N. Y. 152, 134 (2019). https://doi.org/10.1016/j.carbon.2019.06.005

    Article  CAS  Google Scholar 

  23. X. Li, Y. Xu, G. Hu, Z. Luo, D. Xu, T. Tang, J. Wen, M. Li, T. Zhou, Y. Cheng, Electrochim. Acta. 280, 33 (2018). https://doi.org/10.1016/j.electacta.2018.05.106

    Article  CAS  Google Scholar 

  24. A. Abdollahi, A. Abnavi, S. Ghasemi, S. Mohajerzadeh, Z. Sanaee, Electrochim. Acta. 320, 134598 (2019). https://doi.org/10.1016/j.electacta.2019.134598

    Article  CAS  Google Scholar 

  25. J. Ye, B. Hu, Y. Jin, Z. Wang, Y. Xi, L. Fang, Q. Pan, Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2020.136372

    Article  Google Scholar 

  26. E.A. Nagelli, L. Huang, A.Q.Z. Dai, F. Du, L. Dai, Part. Part. Syst. Charact. 34, 3 (2017). https://doi.org/10.1002/ppsc.201700131

    Article  CAS  Google Scholar 

  27. J. Balamurugan, T.D. Thanh, N.H. Kim, J.H. Lee, J. Mater. Chem. A 4, 9555 (2016). https://doi.org/10.1039/c6ta03132c

    Article  CAS  Google Scholar 

  28. M.R. Muda, M.M. Ramli, S.S. Mat Isa, D.S.C. Halin, L.F.A. Talip, N.S. Mazelan, N.A.M. Anhar, N.A. Danial, IOP Conf. Ser. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899X/209/1/012030

    Article  Google Scholar 

  29. H.S. Kim, S.K. Lee, M. Wang, J. Kang, Y. Sun, J.W. Jung, K. Kim, S.M. Kim, J.D. Nam, J. Suhr, Nanomaterials. 8, 1 (2018). https://doi.org/10.3390/nano8090694

    Article  CAS  Google Scholar 

  30. X. Li, J. Rong, B. Wei, ACS Nano. 4, 6039 (2010). https://doi.org/10.1021/nn101595y

    Article  CAS  Google Scholar 

  31. Z.Y. Yang, Y.F. Zhao, Q.Q. Xiao, Y.X. Zhang, L. Jing, Y.M. Yan, K.N. Sun, ACS Appl. Mater. Interfaces. 6, 8497 (2014). https://doi.org/10.1021/am501362g

    Article  CAS  Google Scholar 

  32. Q. Zheng, Z. Cai, Z. Ma, S. Gong, ACS Appl. Mater. Interfaces. 7, 3263 (2015). https://doi.org/10.1021/am507999s

    Article  CAS  Google Scholar 

  33. M. Beidaghi, C. Wang, Adv. Funct. Mater. 22, 4501 (2012). https://doi.org/10.1002/adfm.201201292

    Article  CAS  Google Scholar 

  34. G. Duan, L. Zhao, L. Chen, F. Wang, S. He, S. Jiang, Q. Zhang, New. J. Chem. 45, 22602 (2021). https://doi.org/10.1039/d1nj04667e

    Article  CAS  Google Scholar 

  35. G. Duan, H. Zhang, C. Zhang, S. Jiang, H. Hou, Chin. Chem. Lett. (2023). https://doi.org/10.1016/j.cclet.2023.108283

    Article  Google Scholar 

  36. L. Cao, H. Li, X. Liu, S. Liu, L. Zhang, W. Xu, H. Yang, H. Hou, S. He, Y. Zhao, S. Jiang, J. Colloid Interface Sci. 599, 443 (2021). https://doi.org/10.1016/j.jcis.2021.04.105

    Article  CAS  Google Scholar 

  37. W. Guo, X. Guo, L. Yang, T. Wang, M. Zhang, G. Duan, X. Liu, Y. Li, Polymer (Guildf) 235, 124276 (2021). https://doi.org/10.1016/j.polymer.2021.124276

    Article  CAS  Google Scholar 

  38. J. Yang, H. Li, S. He, H. Du, K. Liu, C. Zhang, S. Jiang, Polymer (Basel) (2022). https://doi.org/10.3390/polym14132521

    Article  Google Scholar 

  39. H. Li, L. Cao, H. Zhang, Z. Tian, Q. Zhang, F. Yang, H. Yang, S. He, S. Jiang, J. Colloid Interface Sci. 609, 179 (2022). https://doi.org/10.1016/j.jcis.2021.11.188

    Article  CAS  Google Scholar 

  40. F. Wang, L. Chen, H. Li, G. Duan, S. He, L. Zhang, G. Zhang, Z. Zhou, S. Jiang, Chin. Chem. Lett. 31, 1986 (2020). https://doi.org/10.1016/j.cclet.2020.02.020

    Article  CAS  Google Scholar 

  41. Y. Wang, H. Li, W. Yang, S. Jian, C. Zhang, G. Duan, Diam. Relat. Mater. 130, 109526 (2022). https://doi.org/10.1016/j.diamond.2022.109526

    Article  CAS  Google Scholar 

  42. Y. Chen, Q. Zhang, M. Chi, C. Guo, S. Wang, D. Min, J. Eng. 7, 127–135 (2022)

    CAS  Google Scholar 

  43. Y. Qing, Y. Liao, J. Liu, C. Tian, H. Xu, Y. Wu, J. Eng. 6, 1–13 (2021). https://doi.org/10.13360/j.issn.2096-1359.202012046

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by PP and GG. The manuscript was written by PP. The work was framed and supervised by RS and SA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajesh Swaminathan.

Ethics declarations

Conflict of interest

The author have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachiannan, P., Gopinath, G., Swaminathan, R. et al. Effect of structural alignment on the electrochemical performance of reduced graphene oxide-single-walled carbon nanotube hybrid for supercapacitor application. J Mater Sci: Mater Electron 34, 2198 (2023). https://doi.org/10.1007/s10854-023-11639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11639-5

Navigation