Skip to main content
Log in

Insight into influence of temperature on electrochemical corrosion behavior of SAC305 tin-based solder alloy in NaCl solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the corrosion behavior of Sn-3.0Ag-0.5Cu (SAC305) tin-based solder alloy at relatively lower temperature is firstly investigated using electrochemical methods. Effects of temperature and sodium chloride (NaCl) concentration on the corrosion behavior are discussed in detail. Results indicate that the anti-corrosion ability decreased when temperature rising at the same NaCl concentration. On the other hand, the corrosion resistance of SAC305 alloy increased with a lager chloride concentration at relatively lower temperatures, whereas the opposite conclusion was reached at high temperatures. X-ray diffraction meter (XRD) and scanning electron micrograph (SEM) studies revealed that at low temperature, chloride ion reacted with SAC305 alloy forming insoluble basic tin chloride with tin alloy, which covered on metal surface and inhibited corrosion process. However, this process is disrupted at relatively higher temperatures due to chloride ions attacked the tin-oxide protective film on the metal surface, further promoting pitting corrosion. Relevant mechanism has been proposed to clarify the roles of temperature and NaCl concentration in the corrosion process for SAC305 alloy in NaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. X. Zhong, W. Lu, B. Liao, B. Medgyes, J. Hu, Y. Zheng, D. Zeng, Z. Zhang, Evidence for ag participating the electrochemical migration of 96.5Sn-3Ag-0.5Cu alloy. Corros. Sci. 156, 10–15 (2019). https://doi.org/10.1016/j.corsci.2019.05.004

    Article  CAS  Google Scholar 

  2. M. Fazal, N. Liyana, S. Rubaiee, A. Anas, A critical review on performance, microstructure and corrosion resistance of Pb-free solders. Measurement. 134, 897–907 (2019). https://doi.org/10.1016/j.measurement.2018.12.051

    Article  Google Scholar 

  3. A. Sharma, H.-R. Sohn, J.P. Jung, Effect of Graphene nanoplatelets on Wetting, microstructure, and Tensile characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy. Metall. Mater. Trans. A 47(1), 494–503 (2016). https://doi.org/10.1007/s11661-015-3214-8

    Article  CAS  Google Scholar 

  4. S. Wan, H. Wang, J.H. Liu, B.K. Liao, X.P. Guo, Self-assembled monolayers for electrochemical migration protection of low-temperature sintered nano-Ag paste. Rare Met. 41(4), 1239–1244 (2022). https://doi.org/10.1007/s12598-021-01866-2

    Article  CAS  Google Scholar 

  5. C. Nyby, X. Guo, J.E. Saal, S.C. Chien, A.Y. Gerard, H. Ke, T. Li, P. Lu, C. Oberdorfer, S. Sahu, S. Li, C.D. Taylor, W. Windl, J.R. Scully, G.S. Frankel, Electrochemical metrics for corrosion resistant alloys. Sci. Data. 8(1), 58 (2021). https://doi.org/10.1038/s41597-021-00840-y

    Article  CAS  Google Scholar 

  6. V. Chidambaram, J. Hald, R. Ambat, J.J.J. Hattel, A corrosion investigation of solder candidates for high-temperature applications. JOM. 61(6), 59–65 (2009). https://doi.org/10.1007/s11837-009-0089-4

    Article  CAS  Google Scholar 

  7. X. Zhong, G. Zhang, Y. Qiu, Z. Chen, X. Guo, C. Fu, The corrosion of tin under thin electrolyte layers containing chloride. Corros. Sci. 66, 14–25 (2013). https://doi.org/10.1016/j.corsci.2012.08.040

    Article  CAS  Google Scholar 

  8. M. Wang, J. Wang, H. Feng, W. Ke, Effects of microstructure and temperature on corrosion behavior of Sn–3.0 Ag–0.5 cu lead-free solder. J. Mater. Sci. 23(1), 148–155 (2012). https://doi.org/10.1007/s10854-011-0552-1

    Article  CAS  Google Scholar 

  9. S. Li, X. Wang, Z. Liu, Y. Jiu, S. Zhang, J. Geng, X. Chen, S. Wu, P. He, W. Long, Corrosion behavior of Sn-based lead-free solder alloys: a review. J. Mater. Sci. 31(12), 9076–9090 (2020). https://doi.org/10.1007/s10854-020-03540-2

    Article  CAS  Google Scholar 

  10. B. Illés, H. Choi, T. Hurtony, K. Dušek, D. Bušek, A. Skwarek, Suppression of Sn whisker growth from SnAgCu solder alloy with TiO2 and ZnO reinforcement nano-particles by increasing the corrosion resistance of the composite alloy. J. Mater. Res. Technol. 20, 4231–4240 (2022). https://doi.org/10.1016/j.jmrt.2022.08.172

    Article  CAS  Google Scholar 

  11. H.A. Jaffery, M.F.M. Sabri, S.M. Said, S.W. Hasan, I.H. Sajid, N.I.M. Nordin, M.M.I.M. Hasnan, D.A. Shnawah, C.V. Moorthy, Electrochemical corrosion behavior of Sn-0.7 Cu solder alloy with the addition of bismuth and iron. J. Alloys Compd. 810, 151925 (2019). https://doi.org/10.1016/j.jallcom.2019.151925

    Article  CAS  Google Scholar 

  12. A. Wierzbicka-Miernik, J. Guspiel, L. Zabdyr, Corrosion behavior of lead-free SAC-type solder alloys in liquid media. Arch. Civ. Mech. Eng 15(1), 206–213 (2015). https://doi.org/10.1016/j.acme.2014.03.003

    Article  Google Scholar 

  13. M. Fayeka, M. Fazal, A. Haseeb, Effect of aluminum addition on the electrochemical corrosion behavior of Sn–3Ag–0.5 Cu solder alloy in 3.5 wt% NaCl solution. J. Mater. Sci. 27(11), 12193–12200 (2016). https://doi.org/10.1007/s10854-016-5374-8

    Article  CAS  Google Scholar 

  14. M. Wang, J. Wang, W. Ke, Corrosion behavior of Sn–3.0 Ag–0.5 Cu solder under high-temperature and high-humidity condition. J. Mater. Sci. 25(3), 1228–1236 (2014). https://doi.org/10.1007/s10854-014-1714-8

    Article  CAS  Google Scholar 

  15. J.W. Osenbach, J.M. DeLucca, B.D. Potteiger, A. Amin, R.L. Shook, F.A. Baiocchi, Sn Corrosion and its influence on Whisker Growth. IEEE Trans. Electron. Packag. Manuf. 30(1), 23–35 (2007). https://doi.org/10.1109/tepm.2006.890637

    Article  CAS  Google Scholar 

  16. D. Zhou, J. Wang, Y. Gao, L. Zhang, Corrosion behavior of tin plate in NaCl solution under different temperature. Int. J. Electrochem. Sci. 12, 192–205 (2017). https://doi.org/10.20964/2017.01.28

    Article  CAS  Google Scholar 

  17. C. Qiao, M. Wang, L. Hao, X. Liu, X. Jiang, X. An, D. Li, Temperature and NaCl deposition dependent corrosion of SAC305 solder alloy in simulated marine atmosphere. J. Mater. Sci. Technol. 75, 252–264 (2021). https://doi.org/10.1016/j.jmst.2020.11.012

    Article  CAS  Google Scholar 

  18. K. Suganuma, K.-S. Kim, Sn-Zn low temperature solder. J. Mater. Sci. 18, 121–127 (2007). https://doi.org/10.1007/s10854-006-9018-2

    Article  CAS  Google Scholar 

  19. G. Chen, X.H. Wang, J. Yang, W.L. Xu, Q. Lin, Effect of micromorphology on corrosion and mechanical properties of SAC305 lead-free solders. Microelectron. Reliab. 108, 113634 (2020). https://doi.org/10.1016/j.microrel.2020.113634

    Article  CAS  Google Scholar 

  20. B.K. Liao, Z.X. Liang, Z.G. Luo, Y. Liu, H.W. Deng, T. Zhang, X.P. Guo, Q.S. Ren, H.E. Ge, Insight into microstructure evolution on anti-corrosion property of AlxCoCrFeNiC0.01 high-entropy alloys using scanning vibration electrode technique. Rare Met. 42, 3455–3467 (2023). https://doi.org/10.1007/s12598-023-02322-z

    Article  CAS  Google Scholar 

  21. S. Wan, H. Wei, R. Quan, Z. Luo, H. Wang, B. Liao, X. Guo, Soybean extract firstly used as a green corrosion inhibitor with high efficacy and yield for carbon steel in acidic medium. Ind. Crops Prod. 187, 115354 (2022). https://doi.org/10.1016/j.indcrop.2022.115354

    Article  CAS  Google Scholar 

  22. B. Liao, Z. Luo, S. Wan, L. Chen, Insight into the anti-corrosion performance of Acanthopanax senticosus leaf extract as eco-friendly corrosion inhibitor for carbon steel in acidic medium. J. Ind. Eng. Chem. 117, 238–246 (2023). https://doi.org/10.1016/j.jiec.2022.10.010

    Article  CAS  Google Scholar 

  23. B. Medgyes, G. Kósa, P. Tamási, B. Szabó, B. Illés, M. Lakatos-Varsányi, D. Rigler, L. Gál, M. Ruszinkó, G. Harsányi, Corrosion investigations on lead-free solder alloys in MgCl2 and NaCl solutions, in 2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME). (IEEE, New York, 2017), pp.427–431. https://doi.org/10.1109/SIITME.2017.8259940

    Chapter  Google Scholar 

  24. S. Fatimah, Y. Kim, D. Yoon, Y. Ko, Anomaly of corrosion resistance of pure magnesium via soft plasma electrolysis at sub-zero temperature. Surf. Coat. Technol. 385, 125383 (2020). https://doi.org/10.1016/j.surfcoat.2020.125383

    Article  CAS  Google Scholar 

  25. M.Z.H. Aziz, N. Zainon, A.A. Mohamad, M.F.M. Nazeri, Corrosion investigation of Sn-0.7Cu Pb-free solder in open-circuit and polarized conditions. IOP Conf. Ser. 957(1), 012012 (2020). https://doi.org/10.1088/1757-899x/957/1/012012

    Article  CAS  Google Scholar 

  26. T.-C. Chang, M.-H. Hon, M.-C. Wang, D.-Y. Lin, Electrochemical behaviors of the Sn-9Zn-xAg lead-free solders in a 3.5 wt% NaCl solution. J. Electrochem. Soc. 151(7), C484 (2004). https://doi.org/10.1149/1.1756890

    Article  CAS  Google Scholar 

  27. C.W. See, M.Z. Yahaya, H. Haliman, A.A. Mohamad, Corrosion behavior of corroded Sn–3.0 Ag–0.5Cu solder alloy. Procedia Chem. 19, 847–854 (2016). https://doi.org/10.1016/j.proche.2016.03.112

    Article  CAS  Google Scholar 

  28. B. Liao, H. Cen, Z. Chen, X. Guo, Corrosion behavior of Sn-3.0Ag-0.5Cu alloy under chlorine-containing thin electrolyte layers. Corros. Sci. 143, 347–361 (2018). https://doi.org/10.1016/j.corsci.2018.08.041

    Article  CAS  Google Scholar 

  29. G. Satishkumar, L. Titelman, M. Landau, Mechanism for the formation of tin oxide nanoparticles and nanowires inside the mesopores of SBA-15. J. Solid State Chem. 182(10), 2822–2828 (2009). https://doi.org/10.1016/j.jssc.2009.07.039

    Article  CAS  Google Scholar 

  30. C.Q. Cheng, F. Yang, J. Zhao, L.H. Wang, X.G. Li, Leaching of heavy metal elements in solder alloys. Corros. Sci. 53(5), 1738–1747 (2011). https://doi.org/10.1016/j.corsci.2011.01.049

    Article  CAS  Google Scholar 

  31. A.F. Mesquita, A.O. Porto, de G.M. Lima, R. Paniago, J.D. Ardisson, The effect of different annealing temperatures on tin and cadmium telluride phases obtained by a modified chemical route. Mater. Res. Bull. 47(11), 3844–3849 (2012). https://doi.org/10.1016/j.materresbull.2012.06.074

    Article  CAS  Google Scholar 

  32. J. Donaldson, W. Moser, W. Simpson, 321. Basic tin (II) chloride. J. Chem. Soc. 1963, 1727–1731 (1963)

    Article  Google Scholar 

  33. A. Gharaibeh, I. Felhősi, Z. Keresztes, G. Harsányi, B. Illés, B. Medgyes, Electrochemical corrosion of SAC alloys: a review. Metals 10(10), 1276 (2020). https://doi.org/10.3390/met10101276

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 52001080).

Author information

Authors and Affiliations

Authors

Contributions

BKL: Methodology, Writing-Original Draft and Supervision. ZYZ: Experiment design, Experiment and Methodology. ZGL: Writing-Original Draft and Writing-Review. DQW: Visualization, Experiment design and Review.

Corresponding authors

Correspondence to Bo-Kai Liao or De-Quan Wu.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, BK., Zhou, ZY., Luo, ZG. et al. Insight into influence of temperature on electrochemical corrosion behavior of SAC305 tin-based solder alloy in NaCl solution. J Mater Sci: Mater Electron 34, 2187 (2023). https://doi.org/10.1007/s10854-023-11634-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11634-w

Navigation