Skip to main content
Log in

Evaluation of cooling rate on electrochemical behavior of Sn–0.3Ag–0.9Zn solder alloy in 3.5 wt% NaCl solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The corrosion resistance of Sn–0.3Ag–0.9Zn alloy solidified under different cooling rates in 3.5 wt% NaCl solution was evaluated based on potentiodynamic polarization, electrochemical impedance spectroscopy and electrochemical noise. It is found that the corrosion resistance of this alloy improves with the increase of the applied cooling rate, which is attributed to the distinct microstructure. The furnace-cooled and air-cooled alloy with active Zn-rich phase and a microstructure formed by a coarser dendritic array associated with larger size of AgZn3 intermetallic compounds exhibit a worse corrosion resistance due to a serious galvanic corrosion. Besides, the Mott–Schottky measurement and the X-ray photoelectron spectroscopy were performed to analyze the semiconductor properties and composition of the passive film formed on the surface of the alloy. It confirms that the stability and protective ability of the passive films formed on furnace-cooled and air-cooled alloy are worse than that of water-cooled alloy due to their higher oxygen vacancy defects and concentration of unstable SnO. Furthermore, the major corrosion product on the surface of the Sn–0.3Ag–0.9Zn alloys is tin oxide chloride hydroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Abtew, G. Selvaduray, Mater. Sci. Eng., R 27, 95–141 (2000)

    Article  Google Scholar 

  2. D.Z. Li, P.P. Conway, C.Q. Liu, Corros. Sci. 50, 995–1004 (2008)

    Article  Google Scholar 

  3. T. Takemoto, T. Funaki, Mater. Trans. 43, 1784–1790 (2002)

    Article  Google Scholar 

  4. A. Ahmido, A. Sabbar, H. Zouihri, K. Dakhsi, F. Guedira, M. Serghini-Idrissi, S. El Hajjaji, Mater. Sci. Eng. B Solid 176, 1032–1036 (2011)

    Article  Google Scholar 

  5. J.E. Lee, K.S. Kim, M. Inoue, J.X. Jiang, K. Suganuma, J. Alloys Compd. 454, 310–320 (2008)

    Article  Google Scholar 

  6. T.C. Chang, M.H. Hon, M.C. Wang, D.Y. Lin, J. Electrochem. Soc. 151, C484–C491 (2004)

    Article  Google Scholar 

  7. Q.V. Bui, N.D. Nam, B.I. Noh, A. Kar, J.G. Kim, S.B. Jung, Mater. Corros. 61, 30–33 (2010)

    Article  Google Scholar 

  8. Y.H. Zhang, Y.C. Liu, Y.J. Han, C. Wei, Z.M. Gao, J. Alloys Compd. 473, 442–445 (2009)

    Article  Google Scholar 

  9. X. Wang, Y.C. Liu, C. Wei, L.M. Yu, Z.M. Gao, Z.Z. Dong, Appl. Phys. A Mater. 96, 969–973 (2009)

    Article  Google Scholar 

  10. W.R. Osório, E.S. Freitas, J.E. Spinelli, A. Garcia, Corros. Sci. 80, 71–81 (2014)

    Article  Google Scholar 

  11. M.F.M. Nazeri, A.B. Ismail, A.A. Mohamad, J. Alloys Compd. 606, 278–287 (2014)

    Article  Google Scholar 

  12. W.R. Osório, L.R. Garcia, L.C. Peixoto, A. Garcia, Mater. Design 32, 4763–4772 (2011)

    Article  Google Scholar 

  13. M.N. Wang, J.Q. Wang, H. Feng, W. Ke, Corros. Sci. 63, 20–28 (2012)

    Article  Google Scholar 

  14. W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, A. Garcia, Electrochim. Acta 56, 8891–8899 (2011)

    Article  Google Scholar 

  15. J. Hu, T.B. Luo, A.M. Hu, M. Li, D.L. Mao, J. Electron. Mater. 40, 1556–1562 (2011)

    Article  Google Scholar 

  16. U.S. Mohanty, K.L. Lin, Corros. Sci. 49, 2815–2831 (2007)

    Article  Google Scholar 

  17. U.S. Mohanty, K.L. Lin, Corros. Sci. 48, 662–678 (2006)

    Article  Google Scholar 

  18. J. Chen, W. Bogaerts, Corros. Sci. 37, 1839–1842 (1995)

    Article  Google Scholar 

  19. D.H. Xia, S.Z. Song, R.K. Zhu, Y. Behnamian, C. Shen, J.H. Wang, J.L. Luo, Y.C. Lu, S. Klimas, Electrochim. Acta 111, 510–525 (2013)

    Article  Google Scholar 

  20. L.V. Taveira, M.F. Montemor, M.D. Belo, M.G. Ferreira, L.F.P. Dick, Corros. Sci. 52, 2813–2818 (2010)

    Article  Google Scholar 

  21. H.H. Ge, X.M. Xu, L. Zhao, F. Song, J. Shen, G.D. Zhou, J. Appl. Electrochem. 41, 519–525 (2011)

    Article  Google Scholar 

  22. X. Wang, Y. Xiu, M.J. Dong, Y.C. Liu, J. Mater. Sci.: Mater. Electron. 22, 592–595 (2011)

    Google Scholar 

  23. H. Ohtani, M. Miyashita, K. Ishida, J. Jpn. Inst. Met. 63, 685–694 (1999)

    Google Scholar 

  24. T.C. Chang, J.W. Wang, M.C. Wang, M.H. Hon, J. Alloys Compd. 422, 239–243 (2006)

    Article  Google Scholar 

  25. M. McCormack, S. Jin, J. Electron. Mater. 23, 715–720 (1994)

    Article  Google Scholar 

  26. F. Rosalbino, E. Angelini, G. Zanicchi, R. Carlini, R. Marazza, Electrochim. Acta 54, 7231–7235 (2009)

    Article  Google Scholar 

  27. L. Liu, Y. Li, F.H. Wang, Electrochim. Acta 54, 768–780 (2008)

    Article  Google Scholar 

  28. D.D. Macdonald, Pure Appl. Chem. 71, 951–978 (1999)

    Article  Google Scholar 

  29. M. Wang, J. Wang, H. Feng, W. Ke, J. Mater. Sci.: Mater. Electron. 23, 148–155 (2011)

    Google Scholar 

  30. P.E. Alvarez, S.B. Ribotta, M.E. Folquer, C.A. Gervasi, J.R. Vilche, Corros. Sci. 44, 49–65 (2002)

    Article  Google Scholar 

  31. U.S. Mohanty, K.L. Lin, Corros. Sci. 50, 2437–2443 (2008)

    Article  Google Scholar 

  32. U.S. Mohanty, K.L. Lin, J. Electron. Mater. 42, 628–638 (2013)

    Article  Google Scholar 

  33. L.C. Tsao, C.W. Chen, Corros. Sci. 63, 393–398 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the China National Funds for Distinguished Young Scientists (Granted No. 51325401), the China National Funds (Granted No. 51131007), the Major State Basic Research Development Program (973 Program) (Granted No. 2014CB046805), the Key Project of Natural Science Foundation of Tianjin (Granted No. 13JCZDJC31900 and 14JCZDJC38700) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Gao or Yongchang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Gao, Z., Liu, Y. et al. Evaluation of cooling rate on electrochemical behavior of Sn–0.3Ag–0.9Zn solder alloy in 3.5 wt% NaCl solution. J Mater Sci: Mater Electron 26, 11–22 (2015). https://doi.org/10.1007/s10854-014-2356-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2356-6

Keywords

Navigation