Skip to main content
Log in

Hierarchical porous Na3V2(PO4)3/graphene microspheres with enhanced sodium-ion storage properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Na3V2(PO4)3, a highly promising cathode material for sodium-ion batteries, often suffers from limited electronic conductivity, impeding its overall performance. To address this issue, a study was conducted to synthesize graphene-attached hierarchical porous Na3V2(PO4)3 microspheres (NVP/GO). Using a hydrothermal method and high temperature sintering process with 1,4-naphthalene dicarboxylic acid (NDC) as a carbon source, this study successfully improved the transport dynamics of NVP/GO, resulting in enhanced rate capability and cycling performance. The NVP/GO microspheres exhibited an initial discharge capacity of 108.6 mAh g−1 at 0.5 C, and even at a high rate of 20 C, the capacity remained at 81.2 mAh g−1. Impressively, after 10,000 cycles at 10 C, the capacity only experienced a minimal decay of 0.006% per cycle, indicating excellent cycling stability. Ex-situ XRD analysis further confirmed the reversible Na ion extraction/insertion process of the NVP/GO electrode. Moreover, when NVP/GO was assembled into full cells with NVP/GO as both the cathode and anode, the electrochemical performance remained highly satisfactory. These findings provide valuable insights for advancing the practical application of sodium-ion cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Lombardo, M. Duquesnoy, H. El-Bouysidy, F. Aren, A. Gallo-Bueno, P.B. Jorgensen, A. Bhowmik, A. Demortiere, E. Ayerbe, F. Alcaide, M. Reynaud, J. Carrasco, A. Grimaud, C. Zhang, T. Vegge, P. Johansson, A.A. Franco, Artificial Intelligence Applied to Battery Research: hype or reality? Chem. Rev. 122, 10899–10969 (2021)

    Article  Google Scholar 

  2. X. Pu, H. Wang, D. Zhao, H. Yang, X. Ai, S. Cao, Z. Chen, Y. Cao, Recent progress in rechargeable sodium-ion batteries: toward high-power applications. Small. 15, e1805427 (2019)

    Article  Google Scholar 

  3. Q. Wang, J. Xu, W. Zhang, M. Mao, Z. Wei, L. Wang, C. Cui, Y. Zhu, J. Ma, Research progress on vanadium-based cathode materials for sodium ion batteries. J. Mater. Chem. A 6, 8815–8838 (2018)

    Article  CAS  Google Scholar 

  4. X. Zhang, X. Rui, D. Chen, H. Tan, D. Yang, S. Huang, Y. Yu, Na3V2(PO4)3: an advanced cathode for sodium-ion batteries. Nanoscale. 11, 2556–2576 (2019)

    Article  CAS  Google Scholar 

  5. L. Shen, Y. Jiang, Y. Jiang, J. Ma, K. Yang, H. Ma, Q. Liu, N. Zhu, Monoclinic Bimetallic Prussian Blue Analog Cathode with High Capacity and Long Life for Advanced Sodium Storage. ACS Appl. Mater. Interfaces. 14, 24332–24340 (2022)

    Article  CAS  Google Scholar 

  6. N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014)

    Article  CAS  Google Scholar 

  7. K.-W. Nam, H. Kim, J.H. Choi, J.W. Choi, Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 12, 1999–2009 (2019)

    Article  CAS  Google Scholar 

  8. J. Zheng, Y. Yang, X. Fan, G. Ji, X. Ji, H. Wang, S. Hou, M.R. Zachariah, C. Wang, Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 12, 615–623 (2019)

    Article  CAS  Google Scholar 

  9. S. Zhang, N. Yu, S. Zeng, S. Zhou, M. Chen, J. Di, Q. Li, An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. J. Mater. Chem. A 6, 12237–12243 (2018)

    Article  CAS  Google Scholar 

  10. M. Zheng, S. Zhang, S. Chen, Z. Lin, H. Pang, Y. Yu, Activated graphene with tailored pore structure parameters for long cycle-life lithium-sulfur batteries. Nano Res. 10, 4305–4317 (2017)

    Article  CAS  Google Scholar 

  11. Y. Fang, J. Zhang, L. Xiao, X. Ai, Y. Cao, H. Yang, Phosphate Framework Electrode materials for Sodium Ion batteries. Adv. Sci. 4, 1600392 (2017)

    Article  Google Scholar 

  12. Y. Yuan, Q. Wei, S. Yang, X. Zhang, M. Jia, J. Yuan, X. Yan, Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries. Energy Storage Mater. 50, 760–782 (2022)

    Article  Google Scholar 

  13. R. Rajagopalan, Z. Zhang, Y. Tang, C. Jia, X. Ji, H. Wang, Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON materials. Energy Storage Mater. 34, 171–193 (2021)

    Article  Google Scholar 

  14. J. Zheng, W. Li, X. Liu, J. Zhang, X. Feng, W. Chen, Progress in Gel Polymer Electrolytes for SodiumIon Batteries. Energy Environ. Mater. 6, e12422 (2023)

    Article  CAS  Google Scholar 

  15. Q. Zheng, H. Yi, X. Li, H. Zhang, Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage. J. Energy Chem. 27, 1597–1617 (2018)

    Article  Google Scholar 

  16. Z. Jian, W. Han, X. Lu, H. Yang, Y.-S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, L. Chen, Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2013)

    Article  CAS  Google Scholar 

  17. R. Klee, M.J. Aragón, P. Lavela, R. Alcántara, J.L. Tirado, Na3V2(PO4)3/C nanorods with Improved Electrode–Electrolyte Interface as Cathode Material for Sodium-Ion batteries. ACS Appl. Mater. Interfaces. 8, 23151–23159 (2016)

    Article  CAS  Google Scholar 

  18. L. Zhao, H. Zhao, J. Wang, Y. Zhang, Z. Li, Z. Du, K. Swierczek, Y. Hou, Nano Na3V2(PO4)3/N-Doped Carbon composites with a hierarchical porous structure for high-rate pouch-type sodium-ion full-cell performance. ACS Appl. Mater. Interfaces. 13, 8445–8454 (2021)

    Article  CAS  Google Scholar 

  19. R. Gao, R. Tan, L. Han, Y. Zhao, Z. Wang, L. Yang, F. Pan, Nanofiber networks of Na3V2(PO4)3 as a cathode material for high performance all-solid-state sodium-ion batteries. J. Mater. Chem. A 5, 5273–5277 (2017)

    Article  CAS  Google Scholar 

  20. Q. Zhou, L. Wang, W. Li, S. Zeng, K. Zhao, Y. Yang, Q. Wu, M. Liu, Q.-. Huang, J. Zhang, X. Sun, Carbon-decorated Na3V2(PO4)3 as Ultralong Lifespan Cathodes for high-energy-density symmetric sodium-ion batteries. ACS Appl. Mater. Interfaces. 13, 25036–25043 (2021)

    Article  CAS  Google Scholar 

  21. A.H. Salehi, S.M. Masoudpanah, M. Hasheminiasari, A. Yaghtin, D. Safanama, C.K. Ong, S. Adams, K. Zaghib, M.V. Reddy, Facile synthesis of hierarchical porous Na3V2(PO4)3/C composites with high-performance na storage properties. J. Power Sources. 481, 228828 (2021)

    Article  CAS  Google Scholar 

  22. J. Zhang, Y. Fang, L. Xiao, J. Qian, Y. Cao, X. Ai, H. Yang, Graphene-scaffolded Na3V2(PO4)3 Microsphere Cathode with High Rate Capability and Cycling Stability for Sodium Ion Batteries. ACS Appl. Mater. Interfaces. 9, 7177–7184 (2017)

    Article  CAS  Google Scholar 

  23. X. Chang, Q. Zhu, N. Sun, Y. Guan, R. Wang, J. Zhao, M. Feng, B. Xu, Graphene-bound Na3V2(PO4)3 film electrode with excellent cycle and rate performance for Na-ion batteries. Electrochim. Acta. 269, 282–290 (2018)

    Article  CAS  Google Scholar 

  24. J. Gao, Y. Tian, L. Ni, B. Wang, K. Zou, Y. Yang, Y. Wang, C.E. Banks, D. Zhang, K. Zhou, H. Liu, W. Deng, G. Zou, H. Hou, X. Ji, Robust cross-linked Na3V2(PO4)2F3 full SodiumIon batteries. Energy Environ. Mater. 0, e12485 (2023)

    Article  Google Scholar 

  25. J. Xu, E. Gu, Z. Zhang, Z. Xu, Y. Xu, Y. Du, X. Zhu, X. Zhou, Fabrication of porous Na3V2(PO4)3/reduced graphene oxide hollow spheres with enhanced sodium storage performance. J. Colloid Interface Sci. 567, 84–91 (2020)

    Article  CAS  Google Scholar 

  26. Z. Lv, M. Ling, H. Yi, H. Zhang, Q. Zheng, X. Li, Electrode Design for High-Performance Sodium-Ion batteries: Coupling Nanorod-assembled Na3V2(PO4)3@C microspheres with a 3D conductive charge Transport Network. ACS Appl. Mater. Interfaces. 12, 13869–13877 (2020)

    Article  CAS  Google Scholar 

  27. K. Sun, Y. Hu, X. Zhang, K. San Hui, K. Zhang, G. Xu, J. Ma, W. He, N-doped hard/soft double-carbon-coated Na3V2(PO4)3 hybrid-porous microspheres with pseudocapacitive behaviour for ultrahigh power sodium-ion batteries. Electrochim. Acta. 335, 135680 (2020)

    Article  CAS  Google Scholar 

  28. X. Cao, A. Pan, S. Liu, J. Zhou, S. Li, G. Cao, J. Liu, S. Liang, Chemical synthesis of 3D graphene-like cages for sodium‐ion batteries applications. Adv. Energy Mater. 7, 1700797 (2017)

    Article  Google Scholar 

  29. H. Jiang, L. Tong, H. Liu, J. Xu, S. Jin, C. Wang, X. Hu, L. Ye, H. Deng, G.J. Cheng, Graphene-Metal-Metastructure Monolith via Laser Shock-Induced Thermochemical stitching of MOF crystals. Matter. 2, 1535–1549 (2020)

    Article  Google Scholar 

  30. C. Zhu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 14, 2175–2180 (2014)

    Article  CAS  Google Scholar 

  31. K. Kretschmer, B. Sun, J. Zhang, X. Xie, H. Liu, G. Wang, 3D interconnected Carbon Fiber Network-enabled Ultralong Life Na3V2(PO4)3@Carbon Paper Cathode for Sodium-Ion batteries. Small. 13, 1603318 (2017)

    Article  Google Scholar 

  32. W. Chang, X.-Y. Zhang, J. Qu, Z. Chen, Y.-J. Zhang, Y. Sui, X.-F. Ma, Z.-Z. Yu, Freestanding Na3V2O2(PO4)2F/Graphene aerogels as high-performance cathodes of Sodium-Ion full batteries. ACS Appl. Mater. Interfaces. 12, 41419–41428 (2020)

    Article  CAS  Google Scholar 

  33. Y. Chen, Y. Xu, X. Sun, B. Zhang, S. He, L. Li, C. Wang, Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries. J. Power Sources. 378, 423–432 (2018)

    Article  CAS  Google Scholar 

  34. Y.-L. Wang, S.-H. Yang, H.-Y. Wang, G.-S. Wang, X.-B. Sun, P.-G. Yin, Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon. 167, 485–494 (2020)

    Article  CAS  Google Scholar 

  35. L. Zhao, H. Zhao, X. Long, Z. Li, Z. Du, Superior High-Rate and Ultralong-Lifespan Na3V2(PO4)3@C Cathode by enhancing the Conductivity both in bulk and on Surface. ACS Appl. Mater. Interfaces. 10, 35963–35971 (2018)

    Article  CAS  Google Scholar 

  36. S.-F. Li, X.-K. Hou, Z.-Y. Gu, Y.-F. Meng, C.-D. Zhao, H.-X. Zhang, X.-L. Wu, Sponge-like NaFe2PO4(SO4)2@rGO as a high-performance cathode material for sodium-ion batteries. New. J. Chem. 45, 4854–4859 (2021)

    Article  CAS  Google Scholar 

  37. L. Chen, Y. Zhao, S. Liu, L. Zhao, Hard Carbon wrapped Na3V2(PO4)3@C Porous Composite extending Cycling Lifespan for Sodium-Ion batteries. ACS Appl. Mater. Interfaces. 9, 44485–44493 (2017)

    Article  CAS  Google Scholar 

  38. H. Huang, S. Luo, C. Liu, Y. Yang, Y.C. Zhai, L.J. Chang, M.Q. Li, Double-carbon coated Na3V2(PO4)3 as a superior cathode material for Na-ion batteries. Appl. Surf. Sci. 487, 1159–1166 (2019)

    Article  CAS  Google Scholar 

  39. Y. Zhao, X. Cao, G. Fang, Y. Wang, H. Yang, S. Liang, A. Pan, G. Cao, Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chem. Eng. J. 339, 162–169 (2018)

    Article  CAS  Google Scholar 

  40. L. Zhao, H. Zhao, Z. Du, J. Wang, X. Long, Z. Li, K. Świerczek, Delicate lattice modulation enables superior na storage performance of Na3V2(PO4)3 as both an anode and cathode material for sodium-ion batteries: understanding the role of calcium substitution for vanadium. J. Mater. Chem. A 7, 9807–9814 (2019)

    Article  CAS  Google Scholar 

  41. D. Wang, N. Chen, M. Li, C. Wang, H. Ehrenberg, X. Bie, Y. Wei, G. Chen, F. Du, Na3V2(PO4)3/C composite as the intercalation-type anode material for sodium-ion batteries with superior rate capability and long-cycle life. J. Mater. Chem. A 3, 8636–8642 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hunan Province [2020JJ4117].

Funding

This work was supported by the Natural Science Foundation of Hunan Province [2020JJ4117].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by HC, SX, MZ, XZ. The first draft of the manuscript was written by HC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongming Zhou.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not involve animal studies. Finally, all authors read and approved the final manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1136.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Xu, S., Zhou, M. et al. Hierarchical porous Na3V2(PO4)3/graphene microspheres with enhanced sodium-ion storage properties. J Mater Sci: Mater Electron 34, 2196 (2023). https://doi.org/10.1007/s10854-023-11633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11633-x

Navigation