Skip to main content
Log in

FDTD simulation studies and trace detection of cyclotetramethylene-tetranitramine and rhodamine 6G over silver nanodendrites on silicon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the focus is to synthesis the silver nanodendrites (Ag NDs) over the surface of a silicon wafer and the trace detection of explosive molecules for defense applications. Redox reaction over the surface of silicon in solution of AgNO3 and HF solution is utilized for the chemical synthesis of silver dendritic nanostructures. The surface morphology of the fabricated nanodendrite is studied through field emission electron microscope (FESEM) and plasmonic simulation for a range of excitation wavelength over a single nanodendrite is done using the Ansys Lumerical FDTD (Finite—Difference Time Domain) method for electric field distribution over the surface of nanodendrite. Over these surface-enhanced Raman Scattering (SERS) substrates, the trace detection of rhodamine 6G (Rd6G) and high melting explosive (HMX) with concentration as low as 10−9 M and 10−7 M with enhancement factor of 64.19 × 106 and 1.1682 × 104, respectively, achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. K.S. Lee, Z. Landry., F.C. Pereira., M. Wagnaer, D. Berry, W.E. Huang, G.T. Taylor, K. Janina, J. Popp, M. Zheng, J.X. Zheng, R. Stocker, Raman microspectroscopy for microbiology. Nat. Rev. Methods Prim. (2021). https://doi.org/10.1038/s43586-021-00075-6

    Article  Google Scholar 

  2. R.R. Jones, D.C. Hooper, L. Zhang, D. Wolverson, V.K. Valev, Raman techniques: fundamentals and frontiers. Nanoscale Res. Lett. (2019). https://doi.org/10.1186/s11671-019-3039-2

    Article  Google Scholar 

  3. P. Garg, R.K. Bharti, Soni, R. Raman, Graphene oxide–silver nanocomposite SERS substrate for sensitive detection of nitro explosives. J. Mater. Sci. Mater. Electron 31, 1094–1104 (2020). https://doi.org/10.1007/s10854-019-02621-1

    Article  CAS  Google Scholar 

  4. S. Cong, X. Liu, Y. Jiang, W. Zhang, Z. Zhao, Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. Innovation. 1, 100051 (2020). https://doi.org/10.1016/j.xinn.2020.100051

    Article  CAS  Google Scholar 

  5. X. Wang, W. Shi, G. She, L. Mu, Surface-enhanced Raman scattering (SERS) on transition metal and semiconductor nanostructures. Phys. Chem. Chem. Phys. 14, 5891–5901 (2012)

    Article  CAS  Google Scholar 

  6. A.I. Pérez-Jiménez, D. Lyu, Z. Lu, G. Liu, B. Ren, Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 11, 4563–4577 (2020). https://doi.org/10.1039/D0SC00809E

    Article  Google Scholar 

  7. X.T. Wang, W.S. Shi, G.W. She, L.X. Mu, S.T. Lee, High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides. Appl. Phys. Lett. 96, 2008–2011 (2010). https://doi.org/10.1063/1.3300837

    Article  CAS  Google Scholar 

  8. G. Awiaz, J. Lin, A. Wu, Recent advances of Au@Ag core–shell SERS-based biosensors. Exploration. 3, 20220072 (2023). https://doi.org/10.1002/EXP.20220072

    Article  Google Scholar 

  9. Y.F. Chan, C.X. Zhang, Z.L. Wu, D.M. Zhao, W. Weng, Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4803937?ver=pdfcov

    Article  Google Scholar 

  10. T.C. Dao, T.Q.N. Luong, T.A. Cao, N.M. Kieu, V.V. Le, Application of silver nanodendrites deposited on silicon in SERS technique for the trace analysis of paraquat. Adv. Nat. Sci. Nanosci. Nanotechnol. (2016). https://doi.org/10.1088/2043-6262/7/1/015007

    Article  Google Scholar 

  11. S. Zou, L. Ma, J. Li, Y. Liu, D. Zhao, Z. Zhang, Ag nanorods-based surface-enhanced Raman scattering: synthesis, quantitative analysis strategies, and applications. Front. Chem. 7, 1–16 (2019)

    Article  Google Scholar 

  12. L. Long, W. Ju, H.Y. Yang, Z. Li, Dimensional design for surface-enhanced Raman spectroscopy. ACS Mater. Au 2, 552–575 (2022)

    Article  CAS  Google Scholar 

  13. Z. Tao, W. Zhao, S. Wang, B. Zhao, R. Hua, J. Qin, Z. Xu, Annealing treatment of focused gallium ion beam processing of SERS gold substrate. Nanotechnol. Precis. Eng. (2021). https://doi.org/10.1063/10.0007286

    Article  Google Scholar 

  14. Q. Wang, D. Wu, Z. Chen, Ag dendritic nanostructures for rapid detection of thiram based on surface-enhanced Raman scattering. RSC Adv. 5, 70553–70557 (2015). https://doi.org/10.1039/C5RA13080H

    Article  CAS  Google Scholar 

  15. Y. Yang, G. Meng, Ag dendritic nanostructures for rapid detection of polychlorinated biphenyls based on surface-enhanced Raman scattering effect. J. Appl. Phys. (2010). https://doi.org/10.1063/1.3298473

    Article  Google Scholar 

  16. N. Baig, I. Kammakakam, W. Falath, I. Kammakakam, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2, 1821–1871 (2021). https://doi.org/10.1039/D0MA00807A

    Article  Google Scholar 

  17. X. Wang, L. Zhu, Z. Zhu, S. Chang, J. Qian, J. Jiang, X. Wang, A. Li, L. Jiang, Y. Ciao, Simultaneously improved SERS sensitivity and thermal stability on ag dendrites via surface protection by atomic layer deposition. Appl. Surf. Sci. 611, 155626 (2023). https://doi.org/10.1016/j.apsusc.2022.155626

    Article  CAS  Google Scholar 

  18. A.P. Manuel, P. Barya, S. Riddell, S. Zeng, K.M. Alam, K. Shanker, Plasmonic Photocatalysis ad SERS sensing using ellipsometrically modeled Ag nanoisland substrates. Nanotechnology. 31, 365301 (2020). https://doi.org/10.1088/1361-6528/ab814c

    Article  CAS  Google Scholar 

  19. R. Shen, T. Zhang, H. Zhu, L. Qin, S.K. Kang, X. Li, A dendritic ag induced by the polyaniline on copper sheet for facilely and highly efficient SERS detection. Mater. Chem. Phys. 287, 126346 (2022). https://doi.org/10.1088/1361-6528/ab814c

    Article  CAS  Google Scholar 

  20. L.T.Q. Ngan, K.N. Minh, D.T. Cao, C.T. Anh, L.V. Van, Synthesis of silver nanodendrites on silicon and its application for the trace detection of pyridaben pesticide using surface-enhanced Raman spectroscopy. J. Electron. Mater. 46, 3770–3775 (2017). https://doi.org/10.1007/s11664-017-5284-4

    Article  CAS  Google Scholar 

  21. W. Ye, C. Shen, J. Tian, C. Wang, L. Bao, H. Gao, Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer. Electrochem. Commun. 10, 625–629 (2008). https://doi.org/10.1016/j.elecom.2008.01.040

    Article  CAS  Google Scholar 

  22. T. Qiu, X.L. Wu, Y.F. Mei, P.K. Chu, G.G. Siu, Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method. Appl. Phys. Mater. Sci. Process. 81, 669–671 (2005). https://doi.org/10.1007/s00339-005-3263-8

    Article  CAS  Google Scholar 

  23. J. Chen, J.J. Devies, A.S. Good fellow, S.M.D. Hall, H.G. Lancaster, X. Liu, C.J. Rhodes, W. Zhou, Growth mechanism of Ag and Cu nanodendrites via galvanic replacement reactions. Prog. Nat. Sci. Mater. 31, 141–151 (2021). https://doi.org/10.1016/j.pnsc.2020.12.007Re

    Article  CAS  Google Scholar 

  24. U. Holzwarth, N. Gibson, The Scherrer equation versus the Debye–Scherrer equation. Nat. Publ. 6, 534 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Director of Solid-State Physics Laboratory (SSPL) for her motivation and giving permission to publish this work.

Funding

For this work, no funding was required.

Author information

Authors and Affiliations

Authors

Contributions

PG conceived and designed the experiments. SNC helped in FDTD simulation of designed dendritic structure by PG in SolidWorks software. B got the TEM analysis done. MK and SD recorded the UV–Vis spectroscopy and X-ray diffraction pattern. The manuscript was written by PG and revised by B.

Corresponding author

Correspondence to Preeti Garg.

Ethics declarations

Conflict of interest

The authors have no relevant financial interest to disclose.

Ethical approval

The authors declare that the presented article is original. It has been written by the stated authors who are all aware to its content and approve its submission. It has not been published previously and is not under consideration for publication anywhere else. There is also no conflict of interest about this work; if accepted, this article will not be published elsewhere in the same form in any of language without the consent of publisher.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, P., Chaudhary, S.N., Bharti et al. FDTD simulation studies and trace detection of cyclotetramethylene-tetranitramine and rhodamine 6G over silver nanodendrites on silicon. J Mater Sci: Mater Electron 34, 2188 (2023). https://doi.org/10.1007/s10854-023-11629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11629-7

Navigation