Skip to main content
Log in

Direct pen writing and atomic-scale molecular dynamics simulation study of a novel silver nano-ink

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, a facile synthesis approach for silver nanoparticles is disclosed through reduction action without the need for a peristaltic pump or inert gas shielding has been disclosed. Subsequent electron microscopy, X-ray diffraction, Ultraviolet–Visible spectroscopy and Fourier transform infrared spectroscopy were conducted to characterize the optimized nanoparticles with an average grain size of 29.9 nm. Employing a designed ink containing 35 wt% silver, four types of inks by direct writing showed different printability on the glass surface and conductive behavior. A resistivity value as low as 4.7 × 10−7 Ω m was achieved following basic traditional sintering process at 250 °C for 30 min, along with stable electrical conductivity under repeated bending, suitable for bending in flexible electronic devices. Finally, molecular dynamics simulation was applied to gain a deeper understanding of the melting and sintering processes of Ag nanoparticles during the atomic-level bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Gu, X. Shi, R. Poprawe, D.L. Bourell, R. Setchi, J. Zhu, Material-structure-performance integrated laser-metal additive manufacturing. Science. 372(6545), g1487 (2021)

    Article  Google Scholar 

  2. E. MacDonald, R. Wicker, Multiprocess 3D printing for increasing component functionality. Science (2016). https://doi.org/10.1126/science.aaf2093

    Article  Google Scholar 

  3. G. Fu, H. Gong, T. Bai, Q. Zhang, H. Wang, Progress and challenges in wearable electrochromic devices: a review. J. Mater. Sci. Mater. Electron. 34(16), 1316 (2023)

    Article  CAS  Google Scholar 

  4. C.H. Rao, K. Avinash, B.K.S.V. Varaprasad, S. Goel, A review on printed electronics with digital 3D printing: fabrication techniques, materials, challenges and future opportunities. J. Electron. Mater. 51(6), 2747–2765 (2022)

    Article  CAS  Google Scholar 

  5. C. Li, Y. Sun, M. Sun, B. Lin, X. Zhang, Novel cocklebur-like nano silver oxide for low-temperature curing pastes with dense conductive paths. J. Mater. Sci. Mater. Electron. 34(27), 1856 (2023)

    Article  CAS  Google Scholar 

  6. D. Türkmen, M. Acer, Kalafat, Lamination curing method for silver nanoparticle inkjet printed flexible electronics: design, uncertainty and performance analysis. J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-11220-0

    Article  Google Scholar 

  7. W. Xie, X. Li, M. Zhang, Q. Zhu, X. Sun, Formulating nickel metal organic decomposition ink with low sintering temperature and high conductivity for ink jet printing applications. J. Mater. Sci. Mater. Electron. 34(27), 1872 (2023)

    Article  CAS  Google Scholar 

  8. A.H. Espera, J.R.C. Dizon, Q. Chen, Advincula, 3D-printing and advanced manufacturing for electronics. Prog Addit. Manufact. 4(3), 245–267 (2019)

    Article  Google Scholar 

  9. Y. Wang, C. Xu, X. Yu, H. Zhang, M. Han, Multilayer flexible electronics: manufacturing approaches and applications. Mater. Today Phys. 23, 100647 (2022)

    Article  Google Scholar 

  10. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics, ACS Nano. 6(4), 2992–3006 (2012)

    CAS  Google Scholar 

  11. C. López-Iglesias, A.M. Casielles, A. Altay, R. Bettini, C. Alvarez-Lorenzo, C.A. García-González, From the printer to the lungs: inkjet-printed aerogel particles for pulmonary delivery. Chem. Eng. J. 357, 559–566 (2019)

    Article  Google Scholar 

  12. M.S. Onses, E. Sutanto, P.M. Ferreira, A.G. Alleyne, J.A. Rogers, Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small. 11(34), 4237–4266 (2015)

    Article  CAS  Google Scholar 

  13. D.J. Roach, C. Roberts, J. Wong, X. Kuang, J. Kovitz, Q. Zhang, T.G. Spence, H.J. Qi, Surface modification of fused filament fabrication (FFF) 3D printed substrates by inkjet printing polyimide for printed electronics. Addit. Manufact. 36, 101544 (2020)

    Article  CAS  Google Scholar 

  14. Y. Zhang, G. Shi, J. Qin, S.E. Lowe, S. Zhang, H. Zhao, Y.L. Zhong, Recent progress of direct ink writing of electronic components for advanced wearable devices, ACS Appl. Electron. Mater. 1(9), 1718–1734 (2019)

    CAS  Google Scholar 

  15. D.V. Baker, C. Bao, W.S. Kim, Highly conductive 3D printable materials for 3D structural electronics. ACS Appl. Electron. Mater. 3(6), 2423–2433 (2021)

    Article  CAS  Google Scholar 

  16. G.L. Goh, H. Zhang, T.H. Chong, W.Y. Yeong, 3D printing of multilayered and multimaterial electronics: a review. Adv. Electron. Mater. (2021). https://doi.org/10.1002/aelm.202100445

    Article  Google Scholar 

  17. Y. Liu, Y. Xu, R. Avila, C. Liu, Z. Xie, L. Wang, X. Yu, 3D printed microstructures for flexible electronic devices. Nanotechnology 30(41), 414001 (2019)

    Article  CAS  Google Scholar 

  18. D. Corzo, G. Tostado-Blázquez, D. Baran, Flexible electronics: status, challenges and opportunities. Front. Electron. 1, 594003 (2020)

    Article  Google Scholar 

  19. F. Tricot, C. Venet, D. Beneventi, D. Curtil, D. Chaussy, T.P. Vuong, Broquin and N. Reverdy-Bruas, Ohmic curing of silver micro-particle inks printed on thermoplastics. J. Electron. Mater. 50(11), 6183–6195 (2021)

    Article  CAS  Google Scholar 

  20. S. Hong, C. Liu, S. Hao, W. Fu, J. Peng, B. Wu, N. Zheng, Antioxidant high-conductivity copper paste for low-cost flexible printed electronics. Npj Flex. Electron. 6(1), 1–9 (2022)

    Article  Google Scholar 

  21. W. Zhang, Y. Zhou, Y. Ding, L. Song, Q. Yuan, W. Zhao, C. Xu, J. Wei, M. Li, H. Ji, Sintering mechanism of size-controllable Cu–Ag core-shell nanoparticles for flexible conductive film with high conductivity, antioxidation, and electrochemical migration resistance. Appl. Surf. Sci. 586, 152691 (2022)

    Article  CAS  Google Scholar 

  22. H. Murthy, N. Thakur, N. Shankhwar, Nickel-based inks for flexible electronics—a review on recent trends. J. Adv. Manufact. Syst. 21(03), 591–624 (2022)

    Article  Google Scholar 

  23. Y.Z.N. Htwe, M. Mariatti, Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: progress, opportunities, and challenges. J. Sci.:  Adv. Mater. Dev. 7(2), 100435 (2022)

    CAS  Google Scholar 

  24. J. Dolai, K. Mandal, N.R. Jana, Nanoparticle size effects in biomedical applications, ACS Appl. Nano Mater. 4(7), 6471–6496 (2021)

    CAS  Google Scholar 

  25. S. Zhang, X. Xu, T. Lin, P. He, Recent advances in nano-materials for packaging of electronic devices. J. Mater. Sci.: Mater. Electron. 30(15), 13855–13868 (2019)

    CAS  Google Scholar 

  26. D. Kim, S. Jeong, J. Moon, Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17(16), 4019–4024 (2006)

    Article  CAS  Google Scholar 

  27. S.W. Song, S. Lee, J.K. Choe, N.H. Kim, J. Kang, A.C. Lee, Y. Choi, A. Choi, Y. Jeong, W. Lee, J.Y. Kim, S. Kwon, J. Kim, Direct 2D-to-3D transformation of pen drawings. Sci. Adv. 7(13), eabf3804 (2021)

    Article  CAS  Google Scholar 

  28. J.B. Szczech, C.M. Megaridis, D.R. Gamota, J. Zhang, Fine-line conductor manufacturing using drop-on demand PZT printing technology. IEEE Trans. Electron. Packag Manufact. 25(1), 26–33 (2002)

    Article  CAS  Google Scholar 

  29. Y. Hao, J. Gao, Z. Xu, N. Zhang, J. Luo, X. Liu, Preparation of silver nanoparticles with hyperbranched polymers as a stabilizer for inkjet printing of flexible circuits. New. J. Chem. 43(6), 2797–2803 (2019)

    Article  CAS  Google Scholar 

  30. M.A.H. Khondoker, S.C. Mun, J. Kim, Synthesis and characterization of conductive silver ink for electrode printing on cellulose film. Appl. Phys. A 112(2), 411–418 (2013)

    Article  CAS  Google Scholar 

  31. M.A. Skylar-Scott, J. Mueller, C.W. Visser, J.A. Lewis, Voxelated soft matter via multimaterial multinozzle 3D printing. Nature. 575(7782), 330–335 (2019)

    Article  CAS  Google Scholar 

  32. P.R. Couchman, W.A. Jesser, Thermodynamic theory of size dependence of melting temperature in metals. Nature. 269(5628), 481–483 (1977)

    Article  CAS  Google Scholar 

  33. S. Jeong, T. Lim, J. Park, C. Han, H. Yang, S. Ju, Pen drawing display. Nat. Commun. 10(1), 4334 (2019)

    Article  Google Scholar 

  34. S. Maity, S. Chakraborty, B.K. Show, S. Bera, Effect of microalloying constituents—a novel approach to ordering phenomenon. J. Alloys Compd. 769, 940–950 (2018)

    Article  CAS  Google Scholar 

  35. S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.K. Mohammed, A. Sumaila, Comparative study of crystallite size using Williamson–Hall and Debye–Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 10(4), 45013 (2019)

    Article  Google Scholar 

  36. J.M. Zook, M.D. Halter, D. Cleveland, S.E. Long, Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity. J. Nanopart. Res. 14(10), 1165 (2012)

    Article  Google Scholar 

  37. M. Behera, S. Ram, Spectroscopy-based study on the interaction between gold nanoparticle and poly(vinylpyrrolidone) molecules in a non-hydrocolloid, Inter. Nano Lett. 3(1), 1–17 (2013)

    CAS  Google Scholar 

  38. K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44(41), 17883–17905 (2015)

    Article  CAS  Google Scholar 

  39. H. Wang, X. Qiao, J. Chen, X. Wang, S. Ding, Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys. 94(2–3), 449–453 (2005)

    Article  CAS  Google Scholar 

  40. A. Mościcki, A. Smolarek-Nowak, J. Felba, A. Kinart, Ink for ink-jet printing of electrically conductive structures on flexible substrates with low thermal resistance. J. Electron. Mater. 46(7), 4100–4108 (2017)

    Article  Google Scholar 

  41. M.A. Rahim, F. Centurion, J. Han, R. Abbasi, M. Mayyas, J. Sun, M.J. Christoe, D. Esrafilzadeh, F.M. Allioux, M.B. Ghasemian, J. Yang, J. Tang, T. Daeneke, S. Mettu, J. Zhang, M.H. Uddin, R. Jalili, Kalantar Zadeh, Polyphenol-induced adhesive liquid metal inks for substrate‐independent direct pen writing. Adv. Funct. Mater. 31(10), 2007336 (2021)

    Article  CAS  Google Scholar 

  42. T. Chen, H. Yang, S. Bai, Y. Zhang, X. Guo, Facile preparation of patterned silver electrodes with high conductivity, flatness and adjustable work function by laser direct writing followed by transfer process. Appl. Surf. Sci. 530, 147237 (2020)

    Article  CAS  Google Scholar 

  43. Z. Li, H. Liu, C. Ouyang, W. Hong Wee, X. Cui, T. Jian Lu, B. Pingguan-Murphy, F. Li, F. Xu, Recent advances in pen-based writing electronics and their emerging applications. Adv. Funct. Mater. 26(2), 165–180 (2016)

    Article  CAS  Google Scholar 

  44. E. Quain, T.S. Mathis, N. Kurra, K. Maleski, K.L. Aken, M. Alhabeb, H.N. Alshareef, Y. Gogotsi, U. UT-Battelle LLC ORNL and S. A. T. C. Energy Frontier research centers EFRC United States fluid interface reactions, direct writing of additive-free MXene‐in‐water ink for electronics and energy storage. Adv. Mater. Technol. 4(1), 1800256 (2019)

    Article  Google Scholar 

  45. R. Li, J. Ji, L. Liu, Z. Wu, D. Ding, X. Yin, Y. Yu, J. Yan, A high-sensitive microwave humidity sensor based on one-step laser direct writing of dielectric silver nanoplates. Sens. Actuators B: Chem. 370, 132455 (2022)

    Article  CAS  Google Scholar 

  46. T.V. Neumann, M.D. Dickey, Liquid metal direct write and 3D Printing: a review. Adv. Mater. Technol. 5(9), 2000070 (2020)

    Article  CAS  Google Scholar 

  47. D. Soltman, V. Subramanian, Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24(5), 2224–2231 (2008)

    Article  CAS  Google Scholar 

  48. H. Zhang, S.K. Moon, T.H. Ngo, 3D printed electronics of non-contact ink writing techniques: status and promise. Int. J. Pr Eng. Man. 7(2), 511–524 (2020)

    Google Scholar 

  49. Z. Liu, H. Ji, S. Wang, W. Zhao, Y. Huang, H. Feng, J. Wei, M. Li, Enhanced electrical and mechanical properties of a printed bimodal silver nanoparticle ink for flexible electronics. Phys. Status Slidi A 215(14), 1800007 (2018)

    Article  Google Scholar 

  50. I.E. Stewart, M.J. Kim, B.J. Wiley, Effect of morphology on the electrical resistivity of silver nanostructure films. ACS Appl. Mater. Inter. 9(2), 1870–1876 (2017)

    Article  CAS  Google Scholar 

  51. M. Makrygianni, I. Kalpyris, C. Boutopoulos, I. Zergioti, Laser induced forward transfer of Ag nanoparticles ink deposition and characterization. Appl. Surf. Sci. 297, 40–44 (2014)

    Article  CAS  Google Scholar 

  52. L. Zhuo, W. Liu, Z. Zhao, E. Yin, C. Li, L. Zhou, Q. Zhang, Y. Feng, S. Lin, Cost-effective silver nano-ink for inkjet printing in application of flexible electronic devices. Chem. Phys. Lett. 757, 137904 (2020)

    Article  CAS  Google Scholar 

  53. D. Kim, S. Jeong, B.K. Park, J. Moon, Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions. Appl. Phys. Lett. 89(26), 264101 (2006)

    Article  Google Scholar 

  54. D.Y. Wang, Y. Chang, Y.X. Wang, Q. Zhang, Z.G. Yang, Green water-based silver nanoplate conductive ink for flexible printed circuit. Mater. Technol. 31(1), 32–37 (2016)

    Article  Google Scholar 

  55. H. Huang, M. Zhou, C. Yin, Q. Chen, X. Zhang, Preparation of a low temperature sintering silver nanoparticle ink and fabrication of conductive patterns on PET substrate (IEEE, Shanghai, 2018), pp.482–485

    Google Scholar 

  56. S.P. Sreenilayam, Ã. McCarthy, L. McKeon, O. Ronan, R. McCann, K. Fleischer, B. Freeland, V. Nicolosi, D. Brabazon, Additive-free silver nanoparticle ink development using flow-based laser ablation synthesis in solution and aerosol jet printing. Chem. Eng. J. 449, 137817 (2022)

    Article  CAS  Google Scholar 

  57. S.L. Hsu, Y. Chen, M. Chen, I. Chen, Low sintering temperature nano-silver pastes with high bonding strength by adding silver 2-ethylhexanoate. Mater. 14(20), 5941 (2021)

    Article  CAS  Google Scholar 

  58. K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu, Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex. Electron. (2022). https://doi.org/10.1038/s41528-022-00133-3

    Article  Google Scholar 

Download references

Funding

The financial support of Xi’an Advanced Manufacturing Technology Project (Grant No. 21XJZZ0048), and Key Research and Development Program of Shaanxi Province (Grant No. 2023-YBGY-467) are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by QW, YF, and WL. The first draft of the manuscript was written by LZ and all authors commented on previous versions of the manuscript. QW, JS, EY, BC, SL, and QZ contributed to the writing—review and editing, with additional contributions to figures from JS, EY, WL, BC, SL, and QZ. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Longchao Zhuo, Enhuai Yin, Bingqing Chen or Samuel Lin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Research involving human and animal participants

This research did not contain any studies involving animal or human participants, nor did it take place on any private or protected areas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 500.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, L., Wang, Q., Sun, J. et al. Direct pen writing and atomic-scale molecular dynamics simulation study of a novel silver nano-ink. J Mater Sci: Mater Electron 34, 2182 (2023). https://doi.org/10.1007/s10854-023-11628-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11628-8

Navigation