Skip to main content
Log in

Ohmic Curing of Silver Micro-Particle Inks Printed on Thermoplastics

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The ohmic curing of two silver micro-particle inks was studied. Silver lines of 35 to 75 µm thick were printed on a mixture of polycarbonate and acrylonitrile butadiene styrene (PC+ABS) substrate and on a mineral reinforced Nylon 6 thermoplastic, using a laboratory-made system based on a volumetric dosing dispenser. After 48 h of stabilization in ambient conditions, a current is applied through the printed lines with an imposed intensity value and application time in order to cure the silver inks. Evolutions of the temperature and the resistivity of silver tracks were followed during the process. Printed thermoplastics were characterized at the end of the process in order to check the absence of deformation due to the curing treatment. The study showed that the ohmic curing led to better electrical performances than an oven process with a considerable time saving. Most of the printed line resistivity drop occurred in the first 30 s of the treatment. The ohmic curing induced a local increase of temperature located in the printed line and avoided damaging the substrates, which makes the process compatible with thermal sensitive substrates. Therefore, the ohmic curing is an efficient low-cost process to cure silver micro-particle inks that could be easily implemented at an industrial scale.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Dyson, K. Ghaffarzadeh, Flexible Hybrid Electronics 2020–2030: Applications, Challenges, Innovations and Forecasts. IDTechEx Research. (2020)

  2. K. Ghaffarzadeh, R. Collins, In-Mold Electronics 2020–2030: Technology, Market Forecasts, Players. IDTechEx Research. (2020)

  3. W. Wu, Nanoscale 9, 7342 (2017).

    Article  CAS  Google Scholar 

  4. I. Reinhold, C.E. Hendriks, R. Eckardt, J.M. Kranenburg, J. Perelaer, R.R. Baumann, and U.S. Schubert, J. Mater. Chem. 19, 3384 (2009).

    Article  CAS  Google Scholar 

  5. B. Polzinger, F. Schoen, V. Matic, J. Keck, H. Willeck, W. Eberhardt, H. Kueck, UV-sintering of inkjet-printed conductive silver tracks. in 2011 11th IEEE International Conference on Nanotechnology, IEEE, Portland, OR, USA. vol. 201 (2011).

  6. M.K. Kim, J.Y. Hwang, H. Kang, K. Kang, S.-H. Lee, S.-J. Moon, Laser sintering of the printed silver ink. in 2009 IEEE International Symposium on Assembly and Manufacturing, IEEE, Seoul, South Korea. Vol. 155 (2009)

  7. K.A. Schroder, S.C. McCool, and W.F. Furlan, NSTI-Nanotech 3, 198 (2006).

    CAS  Google Scholar 

  8. V. Thenot, Impression et recuits sélectifs d’encres métalliques sur papier – Optimisation des propriétés électriques de boucles RFID-HF en vue d’une production industrielle, PhD. thesis. (2017)

  9. M. Allen, A. Alastalo, M. Suhonen, T. Mattila, J. Leppaniemi, and H. Seppa, IEEE Trans. Microwave Theory Techn. 59, 1419 (2011).

    Article  Google Scholar 

  10. M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen, and H. Seppä, Nanotechnology 19, 175201 (2008).

    Article  Google Scholar 

  11. P. Escobedo, M.A. Carvajal, J. Banqueri, A. Martinez-Olmos, L.F. Capitan-Vallvey, and A.J. Palma, IEEE Access 7, 1909 (2019).

    Article  Google Scholar 

  12. O. Kravchuk, Y. Bobitski, M. Reichenberger, Electrical sintering of inkjet printed sensor structures on plyimide substrate. in 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO), IEEE, Kyiv, Ukraine, vol. 104 (2016)

  13. O. Kravchuk, Y. Bobitski, M. Reichenberger, Laser curing of inkjet printed strain gauge structures. in MIXDES - 23rd International Conference Mixed Design of Integrated Circuits and Systems, IEEE, Lodz, Poland, vol. 343 (2016)

  14. H. Lee, D. Kim, I. Lee, Y.-J. Moon, J.-Y. Hwang, K. Park, and S.-J. Moon, Jpn. J. Appl. Phys. 53, 05HC07 (2014).

    Article  Google Scholar 

  15. J. Perelaer, M. Klokkenburg, C.E. Hendriks, and U.S. Schubert, Adv. Mater. 21, 4830 (2009).

    Article  CAS  Google Scholar 

  16. W. Luo, W. Hu, and S. Xiao, J. Phys. Chem. C 112, 2359 (2008).

    Article  CAS  Google Scholar 

  17. Ph. Buffat, and J.-P. Borel, Phys. Rev. A 13, 2287 (1976).

    Article  CAS  Google Scholar 

  18. F.Liwei, Laser curing of inks for Plastic Electronic Applications. University of Liverpool PhD. thesis. (2014)

  19. D.A. Roberson, R.B. Wicker, L.E. Murr, K. Church, and E. MacDonald, Materials 4, 963 (2011).

    Article  CAS  Google Scholar 

  20. J. Niittynen, R. Abbel, M. Mäntysalo, J. Perelaer, U.S. Schubert, and D. Lupo, Thin Solid Films 556, 452 (2014).

    Article  CAS  Google Scholar 

  21. A.J. Lopes, I.H. Lee, E. MacDonald, R. Quintana, and R. Wicker, J. Mater. Process. Technol. 214, 1935 (2014).

    Article  CAS  Google Scholar 

  22. H.W. Tan, N. Saengchairat, G.L. Goh, J. An, C.K. Chua, and T. Tran, Adv. Mater. Technol. 5, 1900897 (2020).

    Article  CAS  Google Scholar 

  23. D.A. Roberson, R.B. Wicker, and E. MacDonald, J. Electr. Mater. 41, 2553 (2012).

    Article  CAS  Google Scholar 

  24. B. Niese, U. Urmoneit, P. Amend, S. Roth, M. Schmidt, Laser Sintering of Silver Ink for Generation of Embedded Electronic Circuits in Stereolithography Parts. in Lasers in Manufacturing Conference (2015)

  25. F. Tricot, C. Venet, D. Beneventi, D. Curtil, D. Chaussy, T.P. Vuong, J.E. Broquin, and N. Reverdy-Bruas, RSC Adv. 8, 26036 (2018).

    Article  CAS  Google Scholar 

  26. J. Perelaer, C. Hendriks, A.W.M. de Laat, and U.S. Schubert, Nanotechnoloy 20, 165303 (2009).

    Article  Google Scholar 

  27. B. Wałpuski, and M. Słoma, Adv. Eng. Mater. 23, 2001085 (2021).

    Article  Google Scholar 

  28. K.C. Yung, X. Gu, C.P. Lee, and H.S. Cho, Ink-jet printing and camera flash sintering of silver tracks on different substrates J. Mater. Process. Technol. 210, 2268 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made within the industrial chair MINT supported by the partnership Foundation of Grenoble INP for which Schneider Electric is a sponsor. The study was realised at the LGP2 laboratory. LGP2 is part of the LabEx Tec 21 (Investissements d'Avenir – grant agreement no. ANR-11-LABX-0030) and of PolyNat Carnot Institute (Investissements d'Avenir – grant agreement no. ANR-16-CARN-0025-01). This research was made possible thanks to the facilities of the TekLiCell platform funded by the R´egion Rhˆone-Alpes (ERDF: European regional development fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Tricot.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tricot, F., Venet, C., Beneventi, D. et al. Ohmic Curing of Silver Micro-Particle Inks Printed on Thermoplastics. J. Electron. Mater. 50, 6183–6195 (2021). https://doi.org/10.1007/s11664-021-09145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09145-7

Keywords

Navigation