Skip to main content
Log in

Electromagnetic wave absorption properties of Ni-doped Dy2Co17 alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Dy2Co17 compound series has garnered considerable attention due to its high saturation magnetization and Curie temperature, making it a promising candidate for microwave absorption applications. The ideal electromagnetic wave absorbing material should possess exceptional electromagnetic wave attenuation and optimal impedance matching. Doping the material can improve its electromagnetic wave attenuation and impedance matching value, thereby enhancing its electromagnetic wave absorbing ability. In this study, Dy2Co17−xNix samples were designed to increase their attenuation capability. The addition of Ni elements caused lattice distortion, which modulated the relaxation polarization and resonance loss capability, resulting in the best impedance matching value. The data on attenuation constant, impedance matching value, electromagnetic parameters, magnetism, eddy current loss, and reflection loss of Dy2Co17−xNix were investigated and analyzed. The results revealed that the samples have a plate-like morphology, and at a frequency of 7.12 GHz and a thickness of 2 mm, the RLmin of Dy2Co16.7Ni0.3 reached − 44.50 dB, indicating good impedance matching. Furthermore, based on CST simulation, the samples demonstrated an effective reduction in the RCS value, highlighting its excellent electromagnetic wave attenuation ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Z.X. Xu, T.R. Xia, L.C. Cheng., R. Xiang, Q.R. Yao, Q.X. Long, Z. Lu, Effect of Tb Doping amount on microwave absorption performance of Dy2Co17 alloys. J. Electron. Mater. 52, 3132–3145 (2023). https://doi.org/10.1007/s11664-023-10249-5

    Article  CAS  Google Scholar 

  2. L. Saini, M.K. Patra, R.K. Jani, G.K. Gupta, A. Dixit, S.R. Vadera, Tunable Twin Matching Frequency (fm1/fm2) Behavior of Ni1−xZnxFe2O4/NBR Composites over 2–12.4 GHz: A Strategic Material System for Stealth Applications. Sci. Rep. 7, 44457 (2017). https://doi.org/10.1038/srep44457

    Article  CAS  Google Scholar 

  3. M. Wang, Q. Yang, Y. Jiang, Z. Li, Z. Xiao, S. Gong, Y. Wang, C. Guo, H. Wei, Effects of Fe content on microstructure and properties of Cu–Fe alloy. Trans. Nonferr. Metal. Soc. 140, 3039–3049 (2021). https://doi.org/10.1016/s1003-6326(21)65713-8

    Article  CAS  Google Scholar 

  4. Y. Duan, Z. Liu, H. Jing, Y. Zhang, S. Li, Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 22, 18291–18299 (2012). https://doi.org/10.1039/C2JM33124A

    Article  CAS  Google Scholar 

  5. A. Radoń, A. Hawełek, D. Łukowiec, J. Kubacki, P. Włodarczyk, Dielectric and electromagnetic interference shielding properties of high entropy (Zn,Fe,Ni,mg,cd)Fe2O4 ferrite. Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-019-56586-6

    Article  CAS  Google Scholar 

  6. Q. Liu, Q. Cao, X. Zhao, H. Bi, C. Wang, D.S. Wu, R. Che, Insights into size-dominant magnetic microwave absorption properties of coni microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 7, 4233–4240 (2015). https://doi.org/10.1021/am508527s

    Article  CAS  Google Scholar 

  7. H. Chen, W.H.S. Sankar, W. Wallace, Magnetic anisotropy phase diagrams of R2(Co1 – xFex)17 compounds (R = Y, pr, Sm, Gd, Dy, Er). Journal of Magnetism and magnetic materials. J. Magn. Magn. Mater. 78, 203–207 (1989). https://doi.org/10.1016/0304-8853(89)90268-0

    Article  CAS  Google Scholar 

  8. B. Liang, B.G. Shen, F.W. Wang, T.Y. Zhao, Z.H. Cheng, S.Y. Zhang, H.-Y. Gong, W.S. Zhan, The magnetic properties of Gd2Co17 – xGax compounds. J. Appl. Phys. 82, 3452–3455 (1997). https://doi.org/10.1063/1.365757

    Article  CAS  Google Scholar 

  9. F. Mulder, R. Thiel, R. Coehoorn, T.H. Jacobs, Buschow. 155Gd Mössbauer effect and magnetic properties of Gd2Co17Nx. J. Magn. Magn. Mat. 117(3), 413–418 (1992). https://doi.org/10.1016/0304-8853(92)90098-9

    Article  CAS  Google Scholar 

  10. J. Shen, P. Qian, N. Che, Theoretical study on the structure for R2Co17 (R = Y, ce, pr, nd, Sm, Gd, Tb, Dy, Ho, Er) and R2Co17T (T = be, C). J. Phys. Chem. Solids. 65(7), 1307–1315 (2004). https://doi.org/10.1016/j.jpcs.2004.02.011

    Article  CAS  Google Scholar 

  11. J. Wang, B. Shen, S. Zhang, W. Zhan, L. Zhang, Structure, exchange interactions and magnetic anisotropy of Ho2Co17 – xSix compounds. J. Appl. Phys. 87, 427–431 (2000). https://doi.org/10.1063/1.371879

    Article  CAS  Google Scholar 

  12. J. Wu, X. Guo, Q. Yan, Diffusion behavior of iron and samarium atoms in Sm2Fe17 alloy compound layer. Intermetallics. 148, 0966–9795 (2022). https://doi.org/10.1016/j.intermet.2022.107645

    Article  CAS  Google Scholar 

  13. Z. Qiao, S. Pan, J. Xiong, L. Cheng, Q. Yao, Structure and microwave absorption properties of Nd-Co-Ni alloys. J. Mater. Sci. 27, 7487 (2016). https://doi.org/10.1007/s10854-016-4726-8

    Article  CAS  Google Scholar 

  14. F. Liu, W. Ao, Y. Jian, J. Li, Effect of substitution of Ga on the structure and magnetic properties of Dy2CO17-xGax (0 <= x <= 7) compounds. Powder Diffr. 22(3), 223–226 (2007). https://doi.org/10.1154/1.2756060

    Article  CAS  Google Scholar 

  15. S. Zhou, L. He, S. Zhao, Y. Guo, J. Zhao, L. Shi, Size-dependent structural and magnetic properties of LaCoO3 nanoparticles. J. Phys. Chem. C 113, 13522–13526 (2009). https://doi.org/10.1021/jp9003032

    Article  CAS  Google Scholar 

  16. J. Singh, C. Singh, D. Kaur, S. Bindra Narang, R. Jotania, R. Joshi, Investigation on structural and microwave absorption property of Co2+ and Y3+ substituted M-type Ba-Sr hexagonal ferrites prepared by a ceramic method. J. Alloys Compd. 734, 344 (2018). https://doi.org/10.1016/j.jallcom.2017.11.002

    Article  CAS  Google Scholar 

  17. P.G.B. Gueye, J.L. Sánchez, E. Navarro, A. Serrano, P. Marín, Control of the length of Fe73.5Si13.5Nb3Cu1B9 microwires to be used for magnetic and Microwave Absorbing purposes(article). ACS Appl. Mater. Interfaces. 12, 15644–15656 (2020). https://doi.org/10.1021/acsami.9b21865

    Article  CAS  Google Scholar 

  18. P. Xu, R. Zhang, X. Qian, X. Li, Q. Zeng, W. You, C. Zhang, J. Zhang, Che. C/MnO@void@C with triple balances for superior microwave absorption performance. ACS Appl. Mater. Interfaces. 13(27), 32037–32045 (2021). https://doi.org/10.1021/acsami.1c08555

    Article  CAS  Google Scholar 

  19. T. Hou, Z. Jia, S. He, Y. Su, X. Zhang, B. Xu, X. Liu, G. Wu, Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption. J. Colloid Interface Sci. 583, 321–330 (2021). https://doi.org/10.1016/j.jcis.2020.09.054

    Article  CAS  Google Scholar 

  20. Q. Huang, C. Bao, Q. Wang, C. Dong, H. Guan, Tuning the microwave absorption capacity of TiP2O7 by composited with biomass carbon. Appl. Surf. Sci. 515, 145974 (2020). https://doi.org/10.1016/j.apsusc.2020.145974

    Article  CAS  Google Scholar 

  21. T.Q. Hou, J. Wang, T.T. Zheng, Y. Liu, G.L. Wu, P.F. Yin, Anion Exchange of Metal Particles on Carbon-Based Skeletons for Promoting Dielectric Equilibrium and High-Efficiency Electromagnetic Wave Absorption. Small 19, e2303463 (2023). https://doi.org/10.1002/smll.202303463

    Article  CAS  Google Scholar 

  22. J.X. Zhou, Z.R. Jia, Y. Zhang, G.L. Wu, Construction of 3D conductive network by flower-like V2O3 synergy with magnetic NiCo for superior electromagnetic wave absorption performance. Mater. Today Phys. 29, 100902 (2022). https://doi.org/10.1016/j.mtphys.2022.100902

    Article  CAS  Google Scholar 

  23. Z.H. Zhou, Q.Q. Zhu, Y. Liu, Y. Zhang, Z.R. Jia, Construction of self-assembly based Tunable Absorber: Lightweight, Hydrophobic and Self-Cleaning properties. Nano-Micro Lett. 15(1), 137 (2023). https://doi.org/10.1007/s40820-023-01108-3

    Article  CAS  Google Scholar 

  24. H.X. Zhang, K.G. Sun, K.K. Sun, L. Chen, G.L. Wu, Core–shell Ni3Sn2@C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption. J. Mater. Sci. Technol. 158, 242–252 (2023). https://doi.org/10.1016/j.jmst.2023.01.053

    Article  Google Scholar 

  25. Y.L. Pan, Q.Q. Zhu, J.H. Zhu, Y.H. Cheng, B.W. Yu, Z.R. Jia, G.L. Wu, Macroscopic electromagnetic synergy network-enhanced N-doped Ni/C gigahertz microwave absorber with regulable microtopography. Nano Res. 7, 10666–10677 (2022). https://doi.org/10.1007/s12274-023-5687-x

    Article  CAS  Google Scholar 

  26. L.F. Sun, Q.Q. Zhu, Z.R. Jia, Z.Q. Guo, W.R. Zhao, G.L. Wu, CrN attached multi-component carbon nanotube composites with superior electromagnetic wave absorption performance. Carbon. 208, 1–9 (2023). https://doi.org/10.1016/j.carbon.2023.03.021

    Article  CAS  Google Scholar 

  27. Z.R. Jia, X.Y. Zhang, Z. Gu, G.L. Wu, MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. Adv. Compos. Hybrid Mater. 6(1), 28 (2023). https://doi.org/10.1007/s42114-022-00615-y

    Article  CAS  Google Scholar 

  28. L. Liang, R. Yang, G. Han, Y. Feng, B. Zhao, R. Zhang, Y. Wang, C. Liu, Enhanced Electromagnetic Wave-Absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interfaces. 12, 2644–2654 (2019). https://doi.org/10.1021/acsami.9b18504

    Article  CAS  Google Scholar 

  29. J. Luo, L. Yue, H. Ji, K. Zhang, N. Yu, Investigation on the optimization, design and microwave absorption properties of BaTb0.2Eu0.2Fe11.6O19/PANI decorated on reduced graphene oxide nanocomposites. J. Mater. Sci. 54(8), 6332–6346 (2019). https://doi.org/10.1007/s10853-018-03305-7

    Article  CAS  Google Scholar 

  30. R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, M. Zheng, Fabrication of nitrogen-doped cobalt oxide/cobalt/carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties. Compos. Part. B-Eng. 178, 1359–8368 (2019). https://doi.org/10.1016/j.compositesb.2019.107518

    Article  CAS  Google Scholar 

  31. Y. He, S.K. Pan, L.C. Cheng, J.L. Luo, J.J. Yu, Improving microwave absorbing property of flaky Ce2Co17 alloys by Ni content and carbonyl iron powder. J Electron. Mater. 48, 1574–1581 (2019). https://doi.org/10.1007/s11664-018-06868-y

    Article  CAS  Google Scholar 

  32. C. Lei, Y. Du, Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl /ferrite composites. J. Alloys Compd. 822, 0925–8388 (2020). https://doi.org/10.1016/j.jallcom.2020.153674

    Article  CAS  Google Scholar 

  33. F. Ren, Z. Guo, Y. Shi, L. Jia, Y. Qing, P. Ren, D. Yan, Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@CoFe2O4 ternary composite aerogels. J. Alloy Compd. 768, 6–14 (2018). https://doi.org/10.1016/j.jallcom.2018.07.209

    Article  CAS  Google Scholar 

  34. C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du, S.R. Hu, J.Y. Wang, X.H. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(1–3), 072906 (2011). https://doi.org/10.1063/1.3555436

    Article  CAS  Google Scholar 

  35. S. Xie, X.N. Guo, G.Q. Jin, X.Y. Guo, Carbon coated Co-SiC nanocomposite with high-performance microwave absorption. Phys. Chem. Chem. Phys. 15(38), 16104–16110 (2013). https://doi.org/10.1039/c3cp52735b

    Article  CAS  Google Scholar 

  36. T. Xia, L. Cheng, M. Wang, Y. Chen, W. Yuan, T. Zeng, Z. Xu, Effect of La Doping on the microwave absorption performance of Dy2Co17 alloys. J. Electron. Mater. 50, 6159–6170 (2021). https://doi.org/10.1007/s11664-021-09133-x

    Article  CAS  Google Scholar 

  37. Y. Shen, Y. Wei, J. Ma, Y. Zhang, B. Ji, J. Tang, L. Zhang, P. Yan, X. Du, Self-cleaning functionalized FeNi/NiFe2O4/NiO/C nanofibers with enhanced microwave absorption performance. Ceram. Int. 46, 13397–13406 (2020). https://doi.org/10.1016/j.ceramint.2020.02.121

    Article  CAS  Google Scholar 

  38. J. Ma, B. Quan, W. Liu, X. Liang, Y. Zhang, D. Li, Y. Cheng, G. Ji, Application of unit polarization strategy to achieve high-performance electromagnetic absorption by designing ternary SiO2@TiO2-C composite. J. Alloy Compd. 709, 796–801 (2017). https://doi.org/10.1016/j.jallcom.2017.03.187

    Article  CAS  Google Scholar 

  39. T.T. Zhen, Z.R. Jia, Q.Q. Zhan, M.B. Ling, Y.D. Su, B.B. Wang, C.H. Zhang, G.L. Wu, Self-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorption. Carbon. 186, 262–272 (2022). https://doi.org/10.1016/j.carbon.2021.10.025

    Article  CAS  Google Scholar 

  40. J. Guo, X. Li, Z.R. Chen, J.F. Zhu, X.M. Mai, R.B. Wei, K. Sun, H. Liu, Y.X. Chen, N. Naik, Z.H. Guo, Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J. Mater. Sci. Technol. 108, 64–72 (2022). https://doi.org/10.1016/j.jmst.2021.08.049

    Article  CAS  Google Scholar 

  41. Y. Jiang, X. Fu, Z. Zhang, W. Du, P. Xi, C. Cheng, R. Fan, Enhanced microwave absorption properties of Fe3C/C nanofibers prepared by electrospinning. J. Alloy Comp. 804, 305–313 (2019). https://doi.org/10.1016/j.jallcom.2019.07.038

    Article  CAS  Google Scholar 

  42. B. Zhao, W. Zhao, G. Shao, B. Fan, R. Zhang, Morphology-control synthesis of a Core-Shell Structured NiCu Alloy with Tunable Electromagnetic-Wave absorption capabilities. ACS Appl. Mater. Interfaces. 7, 12951–12960 (2015). https://doi.org/10.1021/acsami.5b02716

    Article  CAS  Google Scholar 

  43. X. Li, R. Shu, Y. Wu, J. Zhang, Z. Wan, Fabrication of nitrogen-doped reduced graphene oxide/cobalt ferrite hybrid nanocomposites as broadband electromagnetic wave absorbers in both X and Ku bands. Synth. Met. 271, 116621 (2020). https://doi.org/10.1016/j.synthmet.2020.116621

    Article  CAS  Google Scholar 

  44. N. Gao, W. Li, W. Wang, D. Liu, Y. Cui, L. Guo, G. Wang, Balancing dielectric loss and magnetic loss in Fe–NiS. ACS Appl. Mater. Interfaces. 12, 14416–14424 (2020). https://doi.org/10.1021/acsami.9b23379

    Article  CAS  Google Scholar 

  45. W. Dai, H. Luo, F. Chen, X. Wang, Y. Xiong, Y. Cheng, R. Gong, Synthesis of nitrogen-doped graphene wrapped SnO2 hollow spheres as high-performance microwave absorbers. RSC Adv. 9, 10745–10753 (2019). https://doi.org/10.1039/C9RA01556F

    Article  CAS  Google Scholar 

  46. R. Yang, B. Wang, J. Xiang, C. Mu, C. Zhang, F. Wen, C. Wang, C. Su, Z. Liu, Fabrication of NiCo2-Anchored Graphene nanosheets by Liquid-Phase exfoliation for excellent microwave absorbers. ACS Appl. Mater. Interfaces. 9, 12673–12679 (2017). https://doi.org/10.1021/acsami.6b16144

    Article  CAS  Google Scholar 

  47. J. Zhang, J. Li, G. Tan, R. Hu, J. Wang, C. Chang, X. Wang, Thin and Flexible Fe–Si–B/Ni–Cu–P metallic glass Multilayer composites for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces. 9, 42192–42199 (2017). https://doi.org/10.1021/acsami.7b12504

    Article  CAS  Google Scholar 

  48. R.S. Yadav, I. Kuřitka, J. Vilcakova, M. Machovsky, D. Skoda, P. Urbánek, M. Masař, M. Jurča, M. Urbánek, L. Kalina, J. Havlica, NiFe2O4 nanoparticles synthesized by Dextrin from corn-mediated Sol–Gel Combustion Method and its polypropylene Nanocomposites Engineered with reduced Graphene Oxide for the reduction of Electromagnetic Pollution. ACS Omega. 4, 22069–22081 (2019). https://doi.org/10.1021/acsomega.9b03191

    Article  CAS  Google Scholar 

  49. Y. Zhang, X.J. Xu, Machine learning modeling of lattice constants for half Heusler alloys. AIP Adv. 10, 045121 (2020). https://doi.org/10.1063/5.0002448

    Article  CAS  Google Scholar 

  50. Y. Zhang, X.J. Xu, Transformation Temperature Predictions through Computational Intelligence for NiTi-Based shape memory alloys. Shap. Mem. Superelasticity. 6, 374–386 (2020). https://doi.org/10.1007/s40830-020-00303-0

    Article  Google Scholar 

Download references

Funding

Project supported by the National Natural Science Foundation of China (51861006), Guangxi Science and Technology Project (AD19110010), Guangxi Key Laboratory of information materials (221025-Z, 221036-Z, 211015-K, 221710-K), and Talents Project of Guilin University of Electronic Technology.

Author information

Authors and Affiliations

Authors

Contributions

TX and XX performed the experiment; XX performed the data analyses and wrote the manuscript; WY, JX, LC, and QY discuss the manuscript.

Corresponding authors

Correspondence to Lichun Cheng or Jilei Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, X., Cheng, L., Yuan, W. et al. Electromagnetic wave absorption properties of Ni-doped Dy2Co17 alloy. J Mater Sci: Mater Electron 34, 2185 (2023). https://doi.org/10.1007/s10854-023-11625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11625-x

Navigation