Skip to main content
Log in

Structural, morphological and spectroscopic studies of Bi–Ca co-doped SnTe

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi–Ca co-doped SnTe materials are investigated for thermoelectric and infrared detector applications. Solvothermal technique is used to synthesize Sn1−3xBixCa2xTe (x = 0, 0.01, 0.02, 0.03, 0.04) materials. Rock-salt crystal structure of SnTe is confirmed by powder X-ray Diffraction. In Sn0.91Bi0.03Ca0.06Te and Sn0.88Bi0.04Ca0.08Te, a secondary phase of Ca is verified by Rietveld refinement of XRD data. Crystallite size of all the samples are found in nanometer dimensions. FESEM micrographs display the agglomeration of synthesized particles. Te can exist in oxidation states of − 2 and + 4, while Sn can exist in + 2, + 4 states. Raman shift towards higher wavenumber is observed following Bi–Ca co-doping. The band gap of pure SnTe is 0.31 eV, which makes it suitable for infrared photodetector applications. An increase in band gap of SnTe is reported from 0.31 eV to 0.38 eV in Sn0.91Bi0.03Ca0.06Te. Hole carrier concentration is of pristine SnTe is decreased from 14 × 1019 cm−3 to 6.2 × 1019 cm−3 in Sn0.88Bi0.04Ca0.08Te. Decrease of carrier concentration and increase of band gap following doping can enhance thermoelectric performance of SnTe. Experimental findings reveal that Bi-Ca co-doped SnTe is a potential candidate as an infrared detector and thermoelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M. Xu, H. Sun, C. Shen, S. Yang, W. Que, Y. Zhang, X. Song, Lithium-assisted exfoliation of pristine graphite for few-layer graphene nanosheets. Nano Res. 8, 801–807 (2015)

    Article  CAS  Google Scholar 

  2. A. Kubacka, M. Fernández-García, Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555–1614 (2012)

    Article  CAS  Google Scholar 

  3. L. Ji, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011)

    Article  CAS  Google Scholar 

  4. Y. Huang, J.J. Liang, Y.S. Chen, An overview of the applications of graphene-based materials in supercapacitors. Small 8, 1805–1834 (2012)

    Article  CAS  Google Scholar 

  5. M.-R. Gao, J. Jiang, S.-H. Yu, Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR). Small. 8, 13–27 (2012)

    Article  CAS  Google Scholar 

  6. C.-H. Lai, M.-Y. Lu, L.-J. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. Mater. Chem. 22, 19–30 (2012)

    Article  CAS  Google Scholar 

  7. M. Yuan, D.B. Mitzi, Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films. Dalton Trans. (2009). https://doi.org/10.1039/B900617F

    Article  Google Scholar 

  8. P.D. Antunez, J.J. Buckley, R.L. Brutchey, Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale 3, 2399–2411 (2011)

    Article  CAS  Google Scholar 

  9. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes Chem. Rev. 105, 1025–1102 (2005)

    CAS  Google Scholar 

  10. R. Liu, J. Duay, S.B. Lee, Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem. Commun. 47, 1384–1404 (2011)

    Article  CAS  Google Scholar 

  11. R. Kannaujiya, A.J. Khimani, S. Chaki, S. Chauhan, A.B. Hirpara, M.P. Deshpande, Growth and characterizations of tin telluride (SnTe) single crystals. Eur. Phys. J. Plus (2019). https://doi.org/10.1140/epjp/s13360-019-00022-1

    Article  Google Scholar 

  12. P. Nan, R. Liu, C. Yunjie, H. Wu, Y. Wang, R.C. Yu, J. Shen, W. Guo, B. Ge, Microscopic study of thermoelectric In-doped SnTe. Nanotechnology 29, 26LT01 (2018)

    Article  Google Scholar 

  13. R.F. Brebrick, J. Strauss, Anomalous thermoelectric power as evidence for two-valence bands in SnTe. Phys. Rev. 131(1), 104–110 (1963)

    Article  CAS  Google Scholar 

  14. A. Changhua, T. Kaibin, H. Bin, S. Guozhen, W. Chunrui, Q. Yitai, Solution-phase synthesis of monodispersed SnTe nanocrystallites at room temperature. Inorg. Chem. Commun. 6, 181–184 (2003)

    Article  Google Scholar 

  15. J.R. Burke, H.R. Riedl, Self-consistent relativistic energy bands for tin telluride. Phys. Rev. 184, 830 (1969)

    Article  CAS  Google Scholar 

  16. H. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y. Pei, L. Zheng, D. Wu, S. Gong, Y. Chen, J. He, M.G. Kanatzidis, L.-D. Zhao, Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energy Environ. Sci. 8, 3298 (2015)

    Article  CAS  Google Scholar 

  17. Q. Long, J. Xin, S. Li, A. Basit, S. Li, A. Lou, T. Xu, B. Xiao, J. Yang, Q. Jiang, X. Han, Tuning the thermoelectric performance of SnTe via dual-site electronic donation and super-saturation solution. ACS Appl. Energy Mater. 2, 7490–7496 (2019)

    Article  CAS  Google Scholar 

  18. Z. Zhou, J. Yang, Q. Jiang, Y. Luo, D. Zhang, Y. Ren, X. He, J. Xin, Multiple effect of Bi doping to enhanced thermoelectric properties of SnTe. J. Mater. Chem. A 4, 13171–13175 (2016)

    Article  CAS  Google Scholar 

  19. A. Banik, B. Vishal, S. Perumal, R. Datta, K. Biswas, The origin of low thermal conductivity in Sn1–xSbxTe: phonon scattering via layered intergrowth nanostructures. Energy Environ. Sci. 9, 2011–2019 (2016)

    Article  CAS  Google Scholar 

  20. T. Hussain, X. Li, M. Danish, M. Ur Rehman, J. Zhang, D. Li, G. Chen, G. Tang, Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te. Nano Energy. 73, 104832 (2020)

    Article  CAS  Google Scholar 

  21. A. Banik, U. Shenoy, S. Anand, U. Waghmare, K. Biswas, Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem. Mater. 27(2), 581–587 (2015)

    Article  CAS  Google Scholar 

  22. G. Tan, F. Shi, J.W. Doak, H. Sun, L.-D. Zhao, P. Wang, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy Environ. Sci. 8, 267 (2015)

    Article  CAS  Google Scholar 

  23. S. Acharya, J. Pandey, A. Soni, Soft phonon modes driven reduced thermal conductivity in self-compensated Sn1.03Te with Mn doping. Appl. Phys. Lett. 109, 133904 (2016)

    Article  Google Scholar 

  24. R.A.R.A. Orabi, N. Mecholsky, J. Hwang, W. Kim, J.-S. Rhyee, D. Wee, M. Fornari, Band degeneracy, low thermal conductivity and high thermoelectric figure of merit in SnTe-CaTe alloys. Chem. Mater. 28(1), 376–384 (2015)

    Article  Google Scholar 

  25. F. Guo, B. Cui, Y. Liu, X. Meng, J. Cao, Y. Zhang, R. He, W. Liu, H. Wu, S. Pennycook, W. Cai, J. Sui, Thermoelectric SnTe with band convergence, dense dislocations, and interstitials through Sn self-compensation and mn alloying. Small. 14(37), 1802615 (2018)

    Article  Google Scholar 

  26. Y. Pei, L. Zheng, W. Li, S. Lin, Z. Chen, Y. Wang, X. Xu, Y. Hulei, Y. Chen, B. Ge, Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Adv. Electron. Mater. 2, 1600019 (2016)

    Article  Google Scholar 

  27. H. Wang, J. Hwang, C. Zhang, W. Teng, W. su, H. Kim, J. Kim, J. Zhai, X. Wang, H. Park, W. Kim, C. Wang, Enhancement of the thermoelectric performances of bulk SnTe alloys via the synergistic effect of band structure modification and chemical bond softening. J. Mater. Chem. (2017). https://doi.org/10.1039/C7TA03359A

    Article  Google Scholar 

  28. D.K. Bhat, U.S. Shenoy, Enhanced thermoelectric performance of bulk tin telluride: synergistic effect of calcium and indium co-doping. Mater. Today Phys. 4, 12–18 (2018)

    Article  Google Scholar 

  29. Q. Zhang, X. Tan, Z. Guo, H. Wang, C. Xiong, N. Man, F. Shi, H. Hu, G.-Q. Liu, J. Jiang, Improvement of thermoelectric properties of SnTe by Mn–Bi codoping. Chem. Eng. J. 42(2), 127795 (2021)

    Article  Google Scholar 

  30. D.K. Bhat, U.S. Shenoy, Electronic structure engineering of tin telluride through co-doping of bismuth and indium for high performance thermoelectrics: a synergistic effect leading to record high room temperature ZT in tin telluride. J. Mater. Chem. C 7, 4817–4821 (2019)

    Article  Google Scholar 

  31. A. Bugalia, V. Gupta, N. Thakur, Strategies to enhance the performance of thermoelectric materials: a review. J. Renew. Sustain. Energy. 15, 032704 (2023)

    Article  CAS  Google Scholar 

  32. Z. Li, Y. Chen, J. Li, H. Chen, L. Wang, S. Zheng, G. Lu, Synthesizing SnTe nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method. Nano Energy. 28, 78–86 (2016)

    Article  CAS  Google Scholar 

  33. B. Mason, The determination of the density of solids. Geol. Foeren Stockholm Foerh. 66, 27–51 (1944)

    Article  CAS  Google Scholar 

  34. K. Rani, V. Gupta, Surfactant assisted solvothermal synthesis of nanostructure for thermoelectric applications. Mater. Today Proc. 62, 6432–6437 (2022)

    Article  CAS  Google Scholar 

  35. V. Anita, Gupta, Improvement in structural properties of SnTe by Co doping for thermoelectric applications. Mater. Today Proc. 46, 5857–5860 (2021)

    Article  CAS  Google Scholar 

  36. Anita, V. Gupta, Defect engineering in Te rich SnTe for thermoelectric applications. Mater. Today Proc. 54, 637–641 (2022)

    Article  CAS  Google Scholar 

  37. Kavita, V. Gupta, Ranjeet, Structural and morphological properties of nanostructured Bi2Te3 with Mn-doping for thermoelectric applications. Mater. Today Proc. 54, 820–826 (2022)

    Article  CAS  Google Scholar 

  38. Anita, V. Gupta, Structural and morphological studies of Se doped SnTe thermoelectric materials. Mater. Today Proc. 62, 6420–6424 (2022)

    Article  CAS  Google Scholar 

  39. K. Rani, V. Gupta, Ranjeet, A. Pandey, Improved thermoelectric performance of Se doped n-type nanostructured Bi2Te3. J. Mater. Sci. 34, 1074 (2023)

    CAS  Google Scholar 

  40. A.H. Shah, M.B. Ahamed, E. Manikandan, R. Chandramohan, Lydroose, magnetic, optical and structural studies on Ag doped ZnO nanoparticles. J. Mater. Sci: Mater. Electron. 24, 2302–2308 (2013)

    CAS  Google Scholar 

  41. D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson–Hall, Halder–Wagner and size-strain plot methods of CdSe nanoparticles—a comparative study. Mater. Chem. Phys. 239, 122021 (2020)

    Article  CAS  Google Scholar 

  42. U. Shmueli, Theories and techniques of crystal structure determination (Oxford University Press, Oxford, 2007)

    Book  Google Scholar 

  43. D. Sands, Introduction to crystallography (Dover Publications, New York, 1993)

    Google Scholar 

  44. M.C. Robert, R. Saravanan, Single crystal X-ray analysis of electronic structure of the thermoelectric material Sn1–xGexTe. Indian J. Phys. 84(9), 1203–1210 (2010)

    Article  CAS  Google Scholar 

  45. A. Haque, A. Banik, R. Varma, I. Sarkar, K. Biswas, P. Santra, Understanding the chemical nature of the buried nanostructures in low thermal conductive Sb-doped SnTe by variable energy photoelectron spectroscopy. J. Phys. Chem. C 123, 10272–10279 (2019)

    Article  CAS  Google Scholar 

  46. V. Neudachina, T. Shatalova, V. Shtanov, L. Yashina, T. Zyubin, M. Tamm, S. Kobeleva, XPS Study of SnTe (100) oxidation by molecular oxygen. Surfuce Sci. 584, 77–82 (2005)

    Article  CAS  Google Scholar 

  47. R. Iwanowski, M. Heinonen, E. Janik, Sputter cleaning and annealing of zinc-blende MnTe surface—XPS study. Appl. Surf. Sci. 249, 229 (2005)

    Article  Google Scholar 

  48. P. Kumar, P. Srivastava, J. Singh, R. Belwal, M.K. Pandey, K.S. Hui, K.N. Hui, K. Singh, Morphological evolution and structural characterization of bismuth telluride (Bi2Te3) nanostructures. J. Phys. D 46, 285301 (2013)

    Article  Google Scholar 

  49. Z. Jiang, M. Yin, C. Wang, Facile synthesis of Ca2+/Au co-doped SnO2 nanofibers and their application in acetone sensor. Mater. Lett. 194, 209–212 (2017)

    Article  CAS  Google Scholar 

  50. R.M. Badger, A relation between internuclear distances and bond force constants. J. Chem. Phys. 2, 128–131 (1934)

    Article  CAS  Google Scholar 

  51. A. Pine A. and, G. Dresselhaus, Raman spectra and lattice dynamics of tellurium. Phys. Rev. E4, 356 (1971)

    Article  Google Scholar 

  52. B.H. Torrie, Raman spectrum of tellurium. Solid State Corm. 8, 1899 (1970)

    Article  CAS  Google Scholar 

  53. G. Chen, Size and interface effects on thermal conductivity and superlattices and periodic thin film structures. J. Heat Transfer. 119(2), 220–229 (1997)

    Article  CAS  Google Scholar 

  54. T. Siva, S. Muralidharan, S. Sathiyanarayanan, E. Manikandan, Enhanced polymer induced precipitation of polymorphous in calcium carbonate: calcite aragonite vaterite phases. J. Inorg. Organomet. Polym. 27, 770–778 (2017)

    Article  CAS  Google Scholar 

  55. P. Paulraj, A. Umar, K. Rajendran, A. Manikandan, R. Kumar, E. Manikandan, K. Pandian, M.H. Mahnashi, M.A. Alsaiari, A.A. Ibrahim, N. Bouropoulos, S. Baskoutas, Solid-state synthesis of Ag-doped PANI nanocomposites for their end-use as an electrochemical sensor for hydrogen peroxide and dopamine. Electrochim. Acta 363, 137158 (2020)

    Article  CAS  Google Scholar 

  56. P. Makula, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

No external funding was involved in the present research.

Author information

Authors and Affiliations

Authors

Contributions

A: conceptualization, investigation, methodology, formal analysis, writing—original draft. VG:conceptualization, methodology, validation, writing—review and editing, supervision.

Corresponding author

Correspondence to Vivek Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugalia, A., Gupta, V. Structural, morphological and spectroscopic studies of Bi–Ca co-doped SnTe. J Mater Sci: Mater Electron 34, 2190 (2023). https://doi.org/10.1007/s10854-023-11616-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11616-y

Navigation