Skip to main content

Advertisement

Log in

Improved thermoelectric performance of Se-doped n-type nanostructured Bi2Te3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and Se-doped Bi2Te3 nanostructures are prepared by solvothermal method at 190 °C for 24 h. Rhombohedral crystal structures in both cases are confirmed by XRD. They possess nanoplate-like morphology. Carrier concentrations and carrier mobilities are measured using Hall effect measurement. The vibrational modes are obtained using Raman spectroscopy. The energy band gap of 1.58 eV is obtained for doped sample by Tauc plot. The prepared samples are porous as confirmed by FESEM and density measurement. Thermoelectric measurement proves that the power factor enhances from 0.65 to 0.89 mWm−1 K−2 at 385 K with Se doping of Bi2Te3. The total thermal conductivity (k) decreases from 0.39 to 0. W/mK at room temperature due to the formation of point defects and mass fluctuations between different atoms. As a result, figure of merit (ZT) for Bi2Te3 increases from 0.37 to 0.61 at 385 K with Se doping which is 64% higher than pure Bi2Te3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

h :

Planck’s constant

λ :

Wavelength

v :

Frequency

k B :

Boltzmann constant

ZT :

Figure of merit

S :

Seebeck Coefficient

σ :

Electrical Conductivity

k :

Total thermal conductivity

k latt :

Lattice thermal conductivity

k e :

Electrical thermal conductivity

n :

Carrier concentration

e :

Charge of electron

µ :

Carrier mobility

λ :

Wavelength

K :

Scherrer constant

θ :

Bragg’s angle

D :

Crystallite size

ε :

Lattice strain

∆ :

Stacking fault

ρ :

Dislocation density

ϕ :

Porosity

l :

Mean free path

β :

Full width at half maxima

α :

Absorption coefficient

m* :

Effective mass

L :

Lorenz number

Cv :

Specific heat capacity

v :

Phonon group velocity

T :

Absolute Temperature

References

  1. M.G. Lavrentev, V.B. Osvenskii, Y.N. Parkhomenko, G.I. Pivovarov, A.I. Sorokin, L.P. Bulat, H.S. Kim, I.T. Witting, G.J. Snyder, V.T. Bublik, N.Y. Tabachkova, Improved mechanical properties of thermoelectric (Bi0.2Sb0.8)2Te3 by nanostructuring. APL Materials 4(10), 104807 (2016)

    Article  Google Scholar 

  2. I.T. Witting, F. Ricci, T.C. Chasapis, G. Hautier, G.J. Snyder, The thermoelectric properties of n -type bismuth telluride: bismuth selenide alloys Bi2Te3-xSex. Research 2020, 1–15 (2020)

    Article  Google Scholar 

  3. J. Recatala-Gomez, P. Kumar, A. Suwardi, A. Abutaha, I. Nandhakumar, K. Hippalgaonkar, Direct measurement of the thermoelectric properties of electrochemically deposited Bi2Te3 thin films. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  4. V.R. Akshay, M.V. Suneesh, M. Vasundhara, Tailoring thermoelectric properties through structure and morphology in chemically synthesized n-type bismuth telluride nanostructures. Inorg. Chem. 56(11), 6264–6274 (2017)

    Article  CAS  Google Scholar 

  5. M.M. Rashad, A. El-Dissouky, H.M. Soliman, A.M. Elseman, H.M. Refaat, A., Ebrahim Structure evaluation of bismuth telluride (Bi2Te3) nanoparticles with enhanced Seebeck coefficient and low thermal conductivity. Mater. Res. Innov. 22, 315–323 (2018)

    CAS  Google Scholar 

  6. S. Novaconi, P. Vlazan, I. Malaescu, I. Badea, I. Grozescu, P. Sfirloaga, Doped Bi2Te3 nano-structured semiconductors obtained by ultrasonically assisted hydrothermal method Central European. J. Chem. 11(10), 1599–1605 (2013)

    CAS  Google Scholar 

  7. J.D. Musah, X. Yanjun, A.M. Ilyas, T.G. Novak, S. Jeon, C. Arava, S.V. Novikov, D.S. Nikulin, W. Xu, L. Liu, A. Md, K. Lam, X. Chen, C.L. Wu, V.A.L. Roy, Simultaneous enhancement of thermopower and electrical conductivity through isovalent substitution of cerium in bismuth selenide thermoelectric materials. ACS Appl. Mater. Interfaces. 11(47), 44026–44035 (2019)

    Article  CAS  Google Scholar 

  8. Y. Wang, W. Liu, H. Gao, L. Wang, M. Li, X.L. Shi, M. Hong, H. Wang, J. Zou, Z.G. Chen, High porosity in nanostructured n-Type Bi2Te3 obtaining ultralow lattice thermal conductivity. ACS Appl. Mater. Interfaces. 11(34), 31237–31244 (2019)

    Article  CAS  Google Scholar 

  9. T. Parashchuk, R. Knura, O. Cherniushok, K.T. Wojciechowski, Ultralow lattice thermal conductivity and improved thermoelectric performance in Cl- doped Bi2Te3-xSex alloys. ACS Appl. Mater. Interfaces. 14, 33567–33579 (2022)

    Article  CAS  Google Scholar 

  10. S. Bano, D.K. Misra, P. Bharti, A. Kumar, B. Govind, A. Bhardwaj, Enhanced thermoelectric performance at elevated temperature via supression of intrinsic excitation in p-type Bi0.5-xSnxSb1.5Te3 thermoelectric material. J. Mater. Sci: Mater Electron 33, 6018–6030 (2022)

    CAS  Google Scholar 

  11. B. Wiendlocha, Resonant levels, vacancies and doping in Bi2Te3, Bi2Te2Se and Bi2Se3 tetradymites. J. Electron. Mater. 45, 3515–3531 (2016)

    Article  CAS  Google Scholar 

  12. B. Hamawandi, H. Batili, M. Paul, S. Ballikaya, N.I. Kilic, M. Kuchowicz, M. Johnsson, M.S. Toprak, Minute-made, high-efficiency nanostructured Bi2Te3 via high-throughput green solution chemical synthesis. Nanomaterials 11(8), 2053 (2021)

    Article  CAS  Google Scholar 

  13. L. Hu, T. Zhu, X. Liu, X. Zhao, Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Funct. Mater. 24, 5211–5218 (2014)

    Article  CAS  Google Scholar 

  14. Q. Zhang, T. Fang, F. Liu, A. Li, Y. Wu, T. Zhu, X. Zhao, Tuning optimum temperature range of Bi2Te3-based thermoelectric materials by defect engineering. Chem. Asian J. 15, 2775–2792 (2020)

    Article  CAS  Google Scholar 

  15. W. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, Z. Ren, Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv. Energy Mater. 1, 577–587 (2011)

    Article  CAS  Google Scholar 

  16. A. Faiza, F. Omer, T.Z. Fatima, A.U.R. Muhammad, Structural and thermoelectric properties of Gd doped Bi2Te3. Key Eng. Mater. 778, 189–194 (2018)

    Article  Google Scholar 

  17. N.S. Abishek, K.G. Naik, Influence of gallium doping on structural and thermoelectric properties of bismuth telluride. J. Cryst Growth 565, 126141 (2021)

    Article  CAS  Google Scholar 

  18. N. Puri, R.K. Gupta, N.C. Mehra, R.P. Tandon, A.K. Mahapatro, Neodymium doped bismuth telluride alloys using chemical reflux method for thermoelectric application. Integr. Ferroelectr. 184, 9–14 (2022)

    Article  Google Scholar 

  19. C. Chen, T. Wang, Z. Yu, Y. Hutabalian, R.K. Vankayala, C. Chen, W. Hsieh, H. Jeng, D. Wei, Y. Chen, Modulation doping enables ultrahigh power factor and thermoelectric ZT in n-type Bi2Te2.7Se0.3. Adv. Sci. 9, 1–12 (2022)

    Google Scholar 

  20. M.K. Han, Y. Jin, D.H. Lee, S.J. Kim, Thermoelectric properties of Bi2Te3 CuI and the effect of its doping with Pb atoms. Materials 10, 1235 (2017)

    Article  Google Scholar 

  21. Y. Deng, X.S. Zhou, G.D. Wei, J. Liu, C.W. Nan, S.J. Zhao, Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology. J. Phys. Chem. Solids 63, 2119–2121 (2002)

    Article  CAS  Google Scholar 

  22. Y. Liang, W. Wang, B. Zeng, G. Zhang, J. Huang, J. Lib, T. Lib, Y. Song, X. Zhang, Raman scattering investigation of Bi2Te3 hexagonal nanoplates prepared by a solvothermal process in the absence of NaOH. J. Alloys Compd 509, 5147–5151 (2011)

    Article  CAS  Google Scholar 

  23. X.B. Zhao, X.H. Ji, Y.H. Zhang, B.H. Lu, Effect of solvent on the microstructures of nanostructured Bi 2Te3 prepared by solvothermal synthesis. J. Alloys Compd. 368, 349–352 (2004)

    Article  CAS  Google Scholar 

  24. Z. Chen, M.Y. Lin, G.D. Xu, S. Chen, J.H. Zhang, M.M. Wang, Hydrothermal synthesized nanostructure Bi–Sb–Te thermoelectric materials. J. Alloys Compd. 588, 384–387 (2014)

    Article  CAS  Google Scholar 

  25. H.L. Ni, T.J. Zhu, X.B. Zhao, Hydrothermally synthesized and hot-pressed Bi2(Te, Se)3 thermoelectric alloys. Phys. B: Condens. Matter. 364, 50–54 (2005)

    Article  CAS  Google Scholar 

  26. X.B. Zhao, X.H. Ji, Y.H. Zhang, G.S. Cao, J.P. Tu, Hydrothermal synthesis and microstructure investigation of nanostructured bismuth telluride powder. Appl. Phys. A: Mater. Sci. Process. 80, 1567–1571 (2005)

    Article  CAS  Google Scholar 

  27. K.T. Kim, H.M. Lee, D.W. Kim, K.J. Kim, G.H. Ha, G.G. Lee, Bismuth-telluride thermoelectric nanoparticles synthesized by using a polyol process. J. Korean Phys. Soc. 57, 1037–1040 (2010)

    Article  CAS  Google Scholar 

  28. K.B. Masood, U. Farooq, J. Singh, Evolution of the structural, dielectric and electrical transport properties of Bi2Te3 nano-sticks synthesized via polyol and solvothermal routes. Phys. B: Condens. Matter 588, 412183 (2019)

    Article  Google Scholar 

  29. V. Stavila, D.B. Robinson, M.A. Hekmaty, R. Nishimoto, D.L. Medlin, S. Zhu, T.M. Trit, P.A. Sharma, Control of composition and morphology of stoichiometric bismuth telluride nanoparticles using a wet chemical route with removeable surfactants. ACS Appl. Mater. Interfaces 5, 6678–6686 (2013)

    Article  CAS  Google Scholar 

  30. Y.Q. Cao, X.X. Zhao, T.J. Zhu, X.B. Zhang, J.P. Tu, Synthesis and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Appl. Phys. Lett. 92, 143106 (2008)

    Article  Google Scholar 

  31. W. Zhao, Z. Liu, P. Wei, Q. Zhang, W. Zhu, X. Su, X. Tang, J. Yang, Y. Liu, J. Shi, Y. Chao, S. Lin, Y. Pei, Mangetelectric interaction and transport behavoiurs in magnetic nanocomposite thermoelectric materials. Nat. Nanotechnol 12, 55–61 (2017)

    Article  CAS  Google Scholar 

  32. D. Li, J.M. Li, J.C. Li, Y.S. Wang, J. Zhang, X.Y. Qin, Y. Cao, Y.S. Li, G.D. Tang, High thermoelectric performance of n-type Bi2Te2.7Se0.3 via nanostructure engineering. J. Mater. Chem. A 6, 9642–9649 (2018)

    Article  CAS  Google Scholar 

  33. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art. Front. Mater. 8, 611078 (2021)

    Article  Google Scholar 

  34. M. Noroozi, G. Jayakumar, K. Zahmatkesh, J. Lu, L. Hultman, M. Mensi, S. Marcinkevicius, B. Hamawandi, M.Y. Tafti, A.B. Ergul, Z. Ikoni, M.S. Toprak, H.H. Radamson, Unprecedented thermoelectric power factor in SiGe Nanowires field-effect transistors ECS. J. Solid State Sci. Technol. 6(9), Q114–Q119 (2017)

    Article  CAS  Google Scholar 

  35. S. Sk, A. Pandey, S.K. Pandey, Instrument for simultaneous measurement of Seebeck coefficient and thermal conductivity in the temperature range 300–800 K with python interfacing. Rev. Sci. Instrum 93(4), 043902 (2022)

    Article  CAS  Google Scholar 

  36. S. Singh, S.K. Pandey, Fabrication of simple apparatus for resistivity measurement in high temperature range 300–620 K. IEEE Trans. Instrum. Meas. 67, 2169 (2017)

    Article  Google Scholar 

  37. Kavita, V. Gupta, Ranjeet, Structural and morphological properties of nanostructured Bi2Te3 with Mn-doping for thermoelectric applications. Mater. Tod. Proc 54, 820–826 (2022)

    Article  CAS  Google Scholar 

  38. P. Scherrer, Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachr. Ges. Wiss. Gottingen 26, 98 (1918)

    Google Scholar 

  39. J.I. Langford, A.J.C. Wilson, Scherrer after 60 Y: a survey and some new results in the determinatoon of crystallite size. J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  40. K. Rani, V. Gupta, Ranjeet, Surfactant assisted solvothermal synthesis of Bi2Te3 nanostructure for thermoelectric applications. Mater. Today: Proc. 62, 6432–6437 (2022)

    CAS  Google Scholar 

  41. S.K. Bux, J.P. Fleurial, R.B. Kaner, Nanostructured materials for thermoelectric applications. Chem. Commun. 46, 8311–8324 (2010)

    Article  CAS  Google Scholar 

  42. F. Liu, L. Hu, M. Karakaya, P. Puneet, R. Rao, R. Podila, S. Bhattacharya, A.M. Rao, A micro-Raman study of exfoliated few-layered n-type Bi2Te2.7Se0.3. Sci. Rep. 7, 1–10 (2017)

    Google Scholar 

  43. C. Wang, X. Zhu, L. Nilsson, J. Wen, G. Wang, X. Shan, Q. Zhang, S. Zhang, J.J. Jinfeng, Q. Xue, In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness. Nano Res. 6, 688–692 (2013)

    Article  CAS  Google Scholar 

  44. S. Singh, J. Singh, J. Kaushal, S.K. Tripathi, Effects of annealing on the thermoelectric properties of nanocrystalline Bi1.2Sb0.8Te3 thin films prepared by thermal evaporation. Appl. Phys. A: Mater. Sci. Proces. 125, 144 (2019)

    Article  Google Scholar 

  45. X. Shi, X. Ai, Q. Zhang, X. Lu, S. Gu, L. Su, L. Wang, W. Jiang, Enhanced thermoelectric properties of hydrothermally synthesized n-type Se&Lu-codoped Bi2Te3. J. Adv. Ceram. 9, 424–431 (2020)

    Article  CAS  Google Scholar 

  46. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag 22, 0903–0922 (1970)

    Article  CAS  Google Scholar 

  47. G.G. MacFarlane, T.P. McLean, J.E. Quarrington, V. Roberts, Fine structure in the absorption-edge spectrum of Si. Phys. Rev. 111(5), 1245–1254 (1958)

    Article  CAS  Google Scholar 

  48. G.G. MacFarlane, V. Roberts, Infrared absorption of germanium near the lattice edge. Phys. Rev. 97(6), 1714–1716 (1955)

    Article  CAS  Google Scholar 

  49. S. Byun, J. Cha, C. Zhou, Y.K. Lee, H. Lee, S.H. Park, W.B. Lee, I. Chung, Unusual n-type thermoelectric properties of Bi2Te3 doped with divalent alkali earth metals. J. Solid State Chem. 269, 396–400 (2019)

    Article  CAS  Google Scholar 

  50. P. Shyni, P.P. Pradyumnan, Effect of polar solvents on the growth, morphology and thermoelectric properties of Bi2Te3 nano particles. Phys. E: Low-Dimensional Syst. Nanostructures 138, 115072 (2022)

    Article  CAS  Google Scholar 

  51. T. Parashchuk, R. Knura, O. Cherniushok, K.T. Wojciechowski, Ultralow lattice thermal conductivity and improved thermoelectric performance in Cl-doped Bi2Te3- xSex alloys. ACS Appl. Mater. Interfaces 14, 33567–33579 (2022)

    Article  CAS  Google Scholar 

  52. H. Wang, G. Luo, C. Tan, C. Xiong, Z. Guo, Y. Yin, B. Yu, Y. Xiao, H. Hu, G. Liu, X. Tan, J.G. Noudem, J. Jiang, Phonon engineering for thermoelectric enhancement of p-type bismuth telluride by a hot-pressing texture method. ACS Appl. Mater. Interfaces 12, 31612–31618 (2020)

    Article  CAS  Google Scholar 

  53. B. Xu, T. Feng, M.T. Agne, L. Zhou, X. Ruan, G.J. Snyder, Y. Wu, Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te2.5 Se0.5 Hollow nanostructures. Angew. Chem. 129, 3600–3605 (2017)

    Article  Google Scholar 

  54. B. Du, X. Lai, Q. Liu, H. Liu, J. Wu, J. Liu, Z. Zhang, Y. Pei, H. Zhao, J. Jian, Spark plasma sintered bulk nanocomposites of Bi2Te2.7Se0.3 nanoplates Incorporated Ni nanoparticles with enhanced thermoelectric performance. ACS Appl. Mater. Interfaces 11, 31816–31823 (2019)

    Article  CAS  Google Scholar 

  55. M. Hong, T.C. Chasapis, Z. Chen, L. Yang, M.G. Kanatzidis, G.J. Snyder, J. Zou, N-type Bi2Te3-xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 10, 4719–4727 (2016)

    Article  CAS  Google Scholar 

  56. A. Soni, Z. Yanyuan, Y. Ligen, M.K. Aik, M.S. Dresselhaus, Q. Xiong, Enhanced thermoelectric properties of solution grsown Bi2Te3-xSex nanoplatelet composites. Nano Lett. 12, 1203–1209 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Sudhir Kumar Pandey, School of Engineering, Indian Institute of Technology, Mandi, INDIA for providing in-house developed facilities for thermoelectric measurements and Material Research Center, the National Institute of Technology, Jaipur, INDIA for Hall effect measurements.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

K contributed to synthesis, characterization, formal analysis, investigation, validation, and writing of the original draft; VG contributed to resources, visualization, conceptualization, methodology, supervision, and editing of the manuscript; R contributed to resources, conceptualization, supervision, and editing of the manuscript; AP contributed to methodology, characterization, and validation.

Corresponding author

Correspondence to Vivek Gupta.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest.

Ethical approval

This article does not contain any studies on animals or human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, K., Gupta, V., Ranjeet et al. Improved thermoelectric performance of Se-doped n-type nanostructured Bi2Te3. J Mater Sci: Mater Electron 34, 1074 (2023). https://doi.org/10.1007/s10854-023-10490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10490-y

Navigation