Skip to main content
Log in

Impact of capping agent on microstructural and optoelectronic properties of ZnS nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline samples of pristine capped zinc sulphide (ZnS) were synthesized via the sol–gel technique. The nanocrystallinity of the samples was confirmed by the X-ray diffraction technique, where the size of the nanoparticle (NPs) decreases with the increasing of molar concentration (x = 0.01 M, 0.02 M, 0.03 M, 0.04 M.) of capping agent sodium dodecyl sulphate (SDS). The obtained crystallite sizes were found to be in the range 4.6 nm to 2.7 nm. The results were justified by Transmission electron microscopic (TEM) analysis. The Williamson Hall (W–H) analysis revealed the microstrain associated with the particles found to be increased as the capping agent concentration was increased. The optical band gaps of the samples were estimated by using ultraviolet–visible spectroscopic techniques and the band gap values were in the range from 4.18 to 4.61 eV. All the samples showed quantum confinement behaviour compared to bulk sample. Fluorescence (FL) spectra showed five emission peaks at the emission wavelengths around 484, 520, 545, 628, and 694 nm. The FL intensities were proportional to the concentration of capping agent. This tailored fluorescence characteristics of the obtained samples can be utilized in various advanced photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are available within the article.

References

  1. M. Aqeel et al., Appl. Nanosci. 10, 2045 (2020)

    Article  CAS  Google Scholar 

  2. V. Ramasamy et al., Superlattices Microstruct. 51, 699 (2012)

    Article  CAS  Google Scholar 

  3. A. Hassan et al., J. Alloys Compd. 612, 64 (2014)

    Article  Google Scholar 

  4. M. Vishwanath, D.B.N. Dole, J. Mater. Sci. Mater. Electron. 32, 420 (2021)

    Article  Google Scholar 

  5. S.I. Sadovnikov, Mat. Sci. Semicon. Proc. 148, 106766 (2022)

    Article  CAS  Google Scholar 

  6. Z.M. Safwan et al., Appl. Sci. 10, 6282 (2020)

    Article  Google Scholar 

  7. A.I. Onyia et al., J. Ovonic. Res. 14, 49 (2018)

    CAS  Google Scholar 

  8. R. Saravanan et al., J. Alloys Compd. 509, 4065 (2011)

    Article  CAS  Google Scholar 

  9. J. Farazin et al., Phys. B Condens. Matter 564, 94 (2019)

    Article  CAS  Google Scholar 

  10. K. Gegin et al., J. Mater. Sci. Mater. Electron. 34, 1410 (2023)

    Article  CAS  Google Scholar 

  11. H. Sugiyama et al., Phys. Chem. Lett. 14, 1259 (2023)

    Article  CAS  Google Scholar 

  12. H. Wu et al., Appl. Catal. B 325, 122356 (2023)

    Article  CAS  Google Scholar 

  13. H. Saadi et al., J. Mater. Sci. Mater. Electron. 34, 116 (2023)

    Article  CAS  Google Scholar 

  14. K. Senturk et al., J. Mater. Sci. Mater. Electron. 34, 847 (2023)

    Article  CAS  Google Scholar 

  15. L. Ralte et al., Appl. Phys. A 129, 751 (2023)

    Article  CAS  Google Scholar 

  16. M. Zhongge et al., J. Mater. Sci. Mater. Electron. 34, 1431 (2023)

    Article  Google Scholar 

  17. C.V. Restrepo, C.C. Villa, Environ. Nanotechnol. 15, 100428 (2021)

    CAS  Google Scholar 

  18. M. Sharma et al., J. Nanopart. Res. 12, 2655 (2010)

    Article  CAS  Google Scholar 

  19. S.K. Mehta et al., J. Colloid Interface Sci. 360, 497 (2011)

    Article  CAS  Google Scholar 

  20. M. Sharma, Sol. Energy 86, 626 (2012)

    Article  CAS  Google Scholar 

  21. J.K. Salem et al., J. Mater. Sci: Mater. Electron. 25, 2177 (2014)

    CAS  Google Scholar 

  22. J. Kaur et al., Bull. Mater. Sci. 37, 931 (2014)

    Article  CAS  Google Scholar 

  23. A. Kumar, R.K. Upadhyaya, J. Mater. Sci. Mater. Electron. 26, 2430 (2015)

    Article  CAS  Google Scholar 

  24. D. Ayodhya, G. Veerabhadram, J. Fluoresc. 26, 2165 (2016)

    Article  CAS  Google Scholar 

  25. S. Kaur et al., Superlattices Microstruct. 103, 365 (2017)

    Article  CAS  Google Scholar 

  26. F. Amirian et al., J. Lumin. 196, 174 (2018)

    Article  CAS  Google Scholar 

  27. F. Karimi et al., Ultrason. Sonochem. 57, 139 (2019)

    Article  CAS  Google Scholar 

  28. A. Al-Sharabi et al., J. Mater. Sci. Mater. In Elec 33, 20812 (2022)

    Article  CAS  Google Scholar 

  29. B.L. Devi et al., Inorg. Chem. Commun. 149, 110374 (2023)

    Article  CAS  Google Scholar 

  30. D. Mitra et al., J. Colloid Sci. 67, 445 (2005)

    Article  CAS  Google Scholar 

  31. Y. Zhang et al., Mater. Lett. 64, 1521 (2010)

    Article  CAS  Google Scholar 

  32. A. Pal et al., Aust J. Chem. 61, 66 (2008)

    Article  CAS  Google Scholar 

  33. J. Zhang et al., J. Mater. Res. Technol. 24, 1706 (2023)

    Article  CAS  Google Scholar 

  34. L. Wang et al., J. Lumin. 130, 137 (2010)

    Article  CAS  Google Scholar 

  35. S. Ummartyotin et al., Solid State Sci. 14, 299 (2012)

    Article  CAS  Google Scholar 

  36. R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff Jr., Mater. Sci. Eng. B 111, 164 (2004)

    Article  Google Scholar 

  37. S. Mustapha et al., Int. Nano Lett. 11, 241 (2021)

    Article  CAS  Google Scholar 

  38. P. Dey, R. Das., J. Mater. Eng. Perform. 30, 652 (2021)

    Article  CAS  Google Scholar 

  39. R. Maity, U.N. Maiti, M.K. Mitra, K.K. Chattopadhyay, Phys. E. 33, 104 (2006)

    Article  CAS  Google Scholar 

  40. R. Tamrakar, M. Ramrakhiani, B.P. Chandra, Open Nanosci. J. 2, 12 (2008)

    Article  CAS  Google Scholar 

  41. Rahdar, J. Nanostructure Chem. 3, 10 (2013)

    Article  Google Scholar 

  42. P.P. Hankare et al., J. Mater. Sci. Mater. Electron. 20, 374 (2009)

    Article  CAS  Google Scholar 

  43. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011)

    Article  Google Scholar 

  44. L.B. Chandrasekar et al., Inter. Nano Lett. 5, 71 (2015)

    Article  CAS  Google Scholar 

  45. H. Hassan et al., Nonlinear Opt. Quantum Opt. 48, 313 (2018)

    CAS  Google Scholar 

  46. S.K. Abdel-Aal et al., Phys. Status Solidi A 218(12), 2100036 (2021)

    Article  CAS  Google Scholar 

  47. T.B. Sneed et al., Nanoscale. 7, 12248 (2015)

    Article  CAS  Google Scholar 

  48. S.I. Ali et al., J. Lumin. 253, 119465 (2023)

    Article  CAS  Google Scholar 

  49. S.I. Ali et al., Chin. Phys. B 30, 026103 (2021)

    Article  CAS  Google Scholar 

  50. S.I. Ali et al., J. Sol–Gel Sci. Technol. 100, 89 (2021)

    Article  CAS  Google Scholar 

  51. S.I. Ali, D. Dutta, A.C. Mandal, Mater. Chem. Phys. 301, 127627 (2023)

    Article  CAS  Google Scholar 

  52. S. Mandal, S.I. Ali, A.C. Mandal, Appl. Phys. A 129, 219 (2023)

    Article  CAS  Google Scholar 

  53. T.T.Q. Hoa, L.V. Vue, T.D. Canh, N.N. Long, J. Phys. Conf. Ser. 187, 012081 (2009)

    Article  Google Scholar 

  54. P.E. Agbo, P.A. Nwofe, L.O. Odo, Chalcogenide Lett. 14, 357 (2017)

    CAS  Google Scholar 

  55. H. Lin et al., Appl. Catal. B 68, 1 (2006)

    Article  CAS  Google Scholar 

  56. Y. Zhou et al., Appl. Catal. B 248, 157 (2019)

    Article  CAS  Google Scholar 

  57. Z.K. Heiba et al., J. Mater. Sci. Mater. Electron. 31, 21342 (2020)

    Article  CAS  Google Scholar 

  58. K.V. Anand, J. Cluster Sci. 32, 155 (2021)

    Article  Google Scholar 

  59. T. Tsuruoka, C.H. Liang, K. Terabe, T. Hasegawa, Appl. Phys. Lett. 92, 091908 (2008)

    Article  Google Scholar 

  60. D. Sridevi, K. Rajendran, Chalcogenide Lett. 7, 397 (2010)

    CAS  Google Scholar 

  61. H. Wang, H. Li, Chalcogenide Lett. 8, 309 (2011)

    CAS  Google Scholar 

  62. S. Santra et al., Appl. Phys. A 128, 1079 (2022)

    Article  CAS  Google Scholar 

  63. S. Pramanik et al., J. Lumin. 257, 119746 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very much thankful for getting partial financial assistance from DST & FIST, Govt. of India (Grant No. SR/FST/PS-II-001/2011). The authors are especially grateful to The Department of Physics, University of Burdwan for providing necessary facilities to carry out the experiments.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SM contributed towards conceptualization, investigation, methodology, data curation, formal analysis, writing—original draft, and Writing—review & editing. SIA contributed towards investigation, formal analysis, writing—original draft, and writing—review & editing. SP contributed towards investigation and writing—review & editing. ACM contributed towards conceptualization, data curation, investigation, methodology, Writing-original draft, supervision, and writing—review & editing. PG contributed towards formal analysis and writing—review & editing.

Corresponding author

Correspondence to Samiran Mandal.

Ethics declarations

conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. 

Ethical statement

The authors declare that this manuscript complies with scientific ethical standards. There are no other persons who satisfied the criteria for authorship and are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. Furthermore, this article does not contain any studies involving human or animal participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Ali, S.I., Pramanik, S. et al. Impact of capping agent on microstructural and optoelectronic properties of ZnS nanoparticles. J Mater Sci: Mater Electron 34, 2159 (2023). https://doi.org/10.1007/s10854-023-11604-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11604-2

Navigation