Skip to main content

Advertisement

Log in

Impact of Silver Doping on the Crystalline Size and Intrinsic Strain of MPA-Capped CdTe Nanocrystals: A Study by Williamson–Hall Method and Size–Strain Plot Method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Here, 3-marcaptopropionic acid capped CdTe and Ag doped CdTe (Ag/CdTe) nanocrystals have been prepared by chemical method for the study of the effect of silver doping on the size and elastic properties, especially the intrinsic strain from the x-ray diffraction (XRD) study. Transmission electron microscope images show both the CdTe and Ag/CdTe are spherical in shape and confirms that with the doping of silver, the average size slightly decreases from 7 to 6 nm. Again, selected area electron diffraction pattern shows that both the nanocrystals are crystalline in nature, which has further been confirmed from XRD pattern. From the XRD peak broadening study, different elastic properties have been calculated for both CdTe and Ag/CdTe nanocrystals by using different model of Williamson–Hall (W–H) plot and size–stain plot method. From these studies, it has been found that average size decreases by almost 15% after doping, whereas intrinsic strain with other elastic properties increases by almost 70% after doping of silver. Thus, silver doping has significant effect on the size and elastic properties of CdTe nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Khan, M. Shkir, M.A. Manthrammel, V. Ganesh, I.S. Yahia, M. Ahmed, A.M. El-Toni, A. Aldalbahi, H. Ghaithan, and S. AlFaify, Effect of Gd Doping on Structural, Optical Properties, Photoluminescence and Electrical Characteristics of CdS Nanoparticles for Optoelectronics, Ceram. Int., 2019, 45, p 10133

    CAS  Google Scholar 

  2. R. Das and S. Sarkar, Determination of Intrinsic Strain in Poly (Vinylpyrrolidone)-Capped Silver Nano-hexapod Using X-ray Diffraction Technique, Curr. Sci., 2015, 109, p 775

    Google Scholar 

  3. E. Gharibshahi, Simulation, Synthesis and Optical Properties of Cadmium Telluride (CdTe) Semiconductor Nanoparticles, Solid State Commun., 2020, 320, p 114009

    CAS  Google Scholar 

  4. R. Demir and F. Gode, Structural, Optical and Electrical Properties of Nanocrystalline CdS Thin Films Grown by Chemical Bath Deposition Method, Chalcogenide Lett., 2015, 12, p 43

    CAS  Google Scholar 

  5. S. Tachikawa, A. Noguchi, T. Tsuge, M. Hara, O. Odawara, and H. Wada, Optical Properties of ZnO Nanoparticles Capped with Polymers, Materials, 2011, 4, p 1132

    CAS  Google Scholar 

  6. M.A. Garcia, J.M. Merino, E.F. Pinel, A. Quesada, J. de la Venta, M.L.R. Gonzalez, G.R. Castro, P. Crespo, J. Llopis, J.M. Gonzalez-Calbet, and A. Hernando, Magnetic Properties of ZnO Nanoparticles, Nano Lett., 2007, 7, p 1489

    CAS  Google Scholar 

  7. H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, Growth and Optical Properties of Wurtzite-Type CdS Nanocrystals, Inorg. Chem., 2006, 45, p 5103

    CAS  Google Scholar 

  8. P.C. Dey and R. Das, Effect of Silver Doping on the Elastic Properties of CdS Nanoparticles, Indian J. Phys., 2018, 92, p 1099

    CAS  Google Scholar 

  9. Y. Ren, X. Gao, C. Zhang, X. Liu, and S. Sun, The Electronic and Elastic Properties of Si Atom Doping in TiN: A First-Principles Calculation, Coating, 2018, https://doi.org/10.3390/coatings8010004

    Article  Google Scholar 

  10. E. Hasani and D. Raoufi, Effect of Substrate and Post-deposition Annealing on Nanostructure and Optical Properties of CdTe Thin Films, Mater. Res. Exp., 2018, 5, p 046413

    Google Scholar 

  11. E. Campos-González, F. de Moure-Flores, L.E. Ramírez-Velázquez, K. Casallas-Moreno, A. Guillén-Cervantes, J. Santoyo-Salazar, G. Contreras-Puente, and O. Zelaya-Angel, Structural and Optical Properties of CdTe-Nanocrystals Thin Films Grown by Chemical Synthesis, Mater. Sci. Semicond. Process., 2015, 35, p 144

    Google Scholar 

  12. A. Arivarasan, S. Bharathi, V. Vijayaraj, G. Sasikala, and R. Jayavel, Evaluation of Reaction Parameters Dependent Optical Properties and Its Photovoltaics Performances of CdTe QDs, J. Inorg. Organomet. Polym Mater., 2018, 28, p 1263

    CAS  Google Scholar 

  13. A. Majid, M. Tanveer, U.A. Rana, S.U. Khan, and S. Kousar, Facile Synthesis of Mn-Doped CdTe Nanoparticles: Structural and Magnetic Properties, J. Supercond. Nov. Magn., 2016, 29, p 2615

    CAS  Google Scholar 

  14. S.I. Mamun, P. Ramasamy, and J. Kim, One-Dimensional Assemblies of Co-Doped CdTe Nanoparticles in Aqueous Solution, Bull. Korean Chem. Soc., 2015, 36, p 793

    CAS  Google Scholar 

  15. C. Jiang, Z. Shen, C. Luo, H. Lin, R. Huang, Y. Wang, and H. Peng, One-Pot Aqueous Synthesis of Gadolinium Doped CdTe Quantum Dots with Dual Imaging Modalities, Talanta, 2016, 155, p 14

    CAS  Google Scholar 

  16. M. Safari, S. Najafi, E. Arkan, S. Amani, and M. Shahlaei, Facile Aqueous Synthesis of Ni-Doped CdTe Quantum Dots as Fluorescent Probes for Detecting Pyrazinamide in Plasma, Microchem. J., 2019, 146, p 293

    CAS  Google Scholar 

  17. F. Zhang, F. He, X. He, W. Li, and Y. Zhang, Aqueous Synthesis of Highly Luminescent Surface Mn2+-Doped CdTe Quantum Dots as a Potential Multimodal Agent, Luminescence, 2014, 2014(29), p 1059

    Google Scholar 

  18. A. Arivarasan, S. Bharathi, S.E. Arasi, S. Arunpandiyan, M.S. Revathy, and R. Jayavel, Investigations of Rare Earth Doped CdTe QDs as Sensitizers for Quantum Dots Sensitized Solar Cells, 2020, 219, p 116881

    CAS  Google Scholar 

  19. B.P. Pandey, Structural and Elastic Properties Calculation of CdX (X = S, Se, Te) Semiconductors from First-Principles, International Journal of Applied Nanotechnology, 2017, 3(2), p 8

    Google Scholar 

  20. S. Mahadevan, S.P. Behera, G. Gnanaprakash, T. Jayakumar, J. Philip, and B.P.C. Rao, Size Distribution of Magnetic Iron Oxide Nanoparticles Using Warren-Averbach XRD Analysis, J. PHYS. CHEM. SOLIDS, 2012, 73, p 867

    CAS  Google Scholar 

  21. S. Ding, S. Liang, F. Nan, X. Liu, J. Wang, L. Zhou, X. Yu, Z. Hao, and Q. Wang, Synthesis and Enhanced Fluorescence of Ag Doped CdTe Semiconductor Quantum Dots, Nanoscale, 2015, 7, p 1970

    CAS  Google Scholar 

  22. C. Kong, D. Li, Y. Li, R. Partovi-Nia, T.D. James, Y. Long, and H. Tian, Reversible Electrochemical Modulation of Fluorescence and Selective Sensing of Ascorbic Acid Using a DCIP-CA-CdTe QD System, Analyst, 2012, 137, p 1094

    CAS  Google Scholar 

  23. J.E.D. Andrade, R. Machado, M.A. Macedo, F. Guilherme, and C. Cunha, AFM and XRD Characterization of Silver Nanoparticles Films Deposited on the Surface of DGEBA Epoxy Resin by Ion Sputtering, Polímeros, 2013, 23, p 19

    Google Scholar 

  24. B. Fultz and J. Howe, Transmission Electron Microscopy and Diffractometry of Materials. Graduate Texts in Physics, Springer, Berlin, 2013, https://doi.org/10.1007/978-3-642-29761-8_1

    Book  Google Scholar 

  25. R. Das, S. Sarkar, M. Saha, P.C. Dey, and S.S. Nath, Two Peak Luminescence from Linoleic Acid Protected Gold Nanoparticles, J. Lumin., 2015, 168, p 325

    CAS  Google Scholar 

  26. C. Baslak, M.D. Kars, M. Karaman, M. Kus, Y. Cengeloglu, and M. Ersoz, Biocompatible Multi-walled Carbon Nanotube: CdTe Quantum Dot—Polymer Hybrids for Medical Applications, J. Lumin., 2015, 160, p 9

    CAS  Google Scholar 

  27. Y. Liang, J. Tan, J. Wang, J. Chen, B. Sun, and L. Shao, Synthesis and Optimization of CdTe Quantum Dots with the Help of Erythorbic Acid and Ethanol, RSC Adv., 2014, 4, p 48967

    CAS  Google Scholar 

  28. C.D. Gutiérrez-Lazos et al., Optical and Structural Characterization of Oleic Acid-Stabilized CdTe Nanocrystals for Solution Thin Film Processing, Beilstein J. Nanotechnol., 2014, 5, p 881

    Google Scholar 

  29. J.C.L. Sousa, M.G. Vivas, J.L. Ferrari, and M.A. Schiavon, Synthesis and Optical Properties of water-soluble CdTe: Zn2+ Quantum Dots Prepared by the One-Pot Approach, J. Braz. Chem. Soc., 2018, 29(12), p 2496

    CAS  Google Scholar 

  30. S.R. Bera and S. Saha, Fabrication and Characterization of Zn-Doped cdte Nanoparticles Based Dye Sensitized Solar Cells, IOSR-JEEE, 2016, 11(6), p 11

    Google Scholar 

  31. F. Zhang, F. He, X. He, W. Li, and Y.-K. Zhang, Aqueous Synthesis of Highly Luminescent Surface Mn2+-Doped CdTe Quantum Dots as a Potential Multimodal Agent, Luminescence, 2014, 29, p 1059

    CAS  Google Scholar 

  32. H. Bao, E. Wang, and S. Dong, One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe–Cystine Nanocomposites, Small, 2006, 2(4), p 476

    CAS  Google Scholar 

  33. S. Sarkar and R. Das, Determination of Structural Elements of Synthesized Silver Nano-Hexagon from X-Ray Diffraction Analysis, Indian J. Pure Appl. Phys., 2018, 56, p 765

    Google Scholar 

  34. P.C. Dey and R. Das, Photoluminescence Quenching in Ligand Free CdS Nanocrystals Due to Silver Doping Along with Two High Energy Surface States Emission, J. Lumin., 2017, 183, p 368

    CAS  Google Scholar 

  35. R. Das, S.S. Nath, and R. Bhattacharjee, Preparation of Linoleic Acid Capped Gold Nanoparticles and Their Spectra, Physica E Low Dimens. Syst. Nanostruct., 2010, 43, p 224

    CAS  Google Scholar 

  36. M.N. Borah, B.J. Baruah, S. Chaliha, D.P. Gogoi, U. McFarlane, and S. Dutta, Structural Analysis of Chemically Deposited Nanocrystalline CdSe Films, J. Exp. Nanosci., 2013, 8(3), p 273

    CAS  Google Scholar 

  37. T. Toyama, K. Matsune, H. Oda, M. Ohta, and H. Okamoto, X-Ray Diffraction Study of CdS/CdTe Heterostructure for Thin-Film Solar Cell: Influence of CdS Grain Size on Subsequent Growth of (111)-Oriented CdTe Film, J. Phys. D Appl. Phys., 2006, 39, p 1537

    CAS  Google Scholar 

  38. A.V. Kokate, M.R. Asabe, P.P. Hankare, and B.K. Chougule, Effect of Annealing on Properties of Electrochemically Deposited CdTe Thin Films, J. Phys. Chem. Solids, 2007, 68, p 53

    CAS  Google Scholar 

  39. R. Jacob and J. Isac, X-Ray Diffraction Line Profile Analysis of BaSr0.6Fe0.4TiO3 (BSFTO), Int. J. Chem. Stud., 2015, 2, p 12

    Google Scholar 

  40. P.M. Ajayan, L.S. Schadler, and P.V. Braun, Nanocomposite Science and Technology, Wiley, Weinheim, 2003

    Google Scholar 

  41. C.P. Poole and F.J. Owens, Introduction to Nanotechnology, Wiley, New Jersey, 2003

    Google Scholar 

  42. M. Mazur, Electrochemically Prepared Silver Nanoflakes and Nanowires, Electrochem. Commun., 2004, 6, p 400

    CAS  Google Scholar 

  43. V. Biju, N. Sugathan, V. Vrinda, and S.L. Salini, Estimation of Lattice Strain in Nanocrystalline Silver from X-Ray Diffraction Line Broadening, J. Mater. Sci., 2008, 43, p 1175

    CAS  Google Scholar 

  44. M.A.M. Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, and M.S. AlSalhi, Structural and Thermal Studies of Silver Nanoparticles and Electrical Transport Study of Their Thin Films, Nanoscale Res. Lett., 2011, 6, p 434

    Google Scholar 

  45. A.K. Jha and K. Prasad, Green Synthesis of Silver Nanoparticles Using Cycas Leaf, Int. J. Green Nanotechnol. Phys. Chem., 2010, 1, p 110

    Google Scholar 

  46. P. Bindu and S. Thomas, Estimation of Lattice Strain in ZnO Nanoparticles: X-Ray Peak Profile Analysis, J. Theor. Appl. Phys., 2014, 8, p 123

    Google Scholar 

  47. M.S.S. Saravanan, K. Sivaprasad, P. Susila, and S.P. Kumaresh, Anisotropy Models in Precise Crystallite Size Determination of Mechanically Alloyed Powders, Physica B, 2011, 406, p 165

    Google Scholar 

  48. R. Das and S. Sarkar, X-ray Diffraction Analysis of Synthesized Silver Nanohexagon for the Study of Their Mechanical Properties, Mater. Chem. Phys., 2015, 167, p 97

    CAS  Google Scholar 

  49. Z. Yan and J. Vincent, General Compliance Transformation Relations for All Seven Crystal Systems, Sci. China Phys. Mech. Astron., 2013, 56, p 694

    Google Scholar 

  50. A. Cazzani and M. Rovati, Extrema of Young’s Modulus for Cubic and Transversely Isotropic Solids, Int. J. Solids Struct., 2003, 40, p 1713

    Google Scholar 

  51. T.H. Courtney, Mechanical Behavior of Materials, 2nd ed., Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2012

    Google Scholar 

  52. J.N. Lalena and D.A. Cleary, Principles of Inorganic Materials Design, 2nd ed., Wiley, Hoboken, 2010

    Google Scholar 

  53. O. Madelung, Semiconductors: Data Handbook, 3rd ed., Springer, Berlin, 2003, https://doi.org/10.1007/978-3-642-18865-7

    Book  Google Scholar 

  54. P.V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, and O.M. Ntwaeaborwa, Analysis of the Structure, Particle Morphology and Photoluminescent Properties of ZnS: Mn2+ Nanoparticulate Phosphors, Optik, 2018, 153, p 31

    CAS  Google Scholar 

  55. E. Deligoz, K. Colakoglu, and Y. Ciftci, Elastic, Electronic, and Lattice Dynamical Properties of CdS, CdSe CdTe Physica B, 2006, 373, p 124

    CAS  Google Scholar 

  56. A.K. Zak, W.H. Abd Majid, M.E. Abrishami, and R. Yousefi, X-Ray Analysis of ZnO Nanoparticles by Williamson–Hall and Size–Strain Plot Methods, Solid State Sci., 2011, 13, p 251

    Google Scholar 

  57. S.S. Boxi and S. Paria, Effect of Silver Doping on TiO2, CdS, and ZnS Nanoparticles for the Photocatalytic Degradation of Metronidazole Under Visible Light, RSC Adv., 2014, 4, p 37752

    CAS  Google Scholar 

  58. D. Nath, F. Singh, and R. Das, X-Ray Diffraction Analysis by Williamson–Hall, Halder–Wagner and Size–Strain Plot Methods of CdSe Nanoparticles: a Comparative Study, Mater. Chem. Phys., 2020, 239, p 122021

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to SAIF, NEHU, Shillong, India for HRTEM study and to Mr. Krishna Deb, Department of Physics, NIT, Agartala, Tripura (W), India for the assistance during the x-ray diffraction analysis. The authors are grateful to FIST-DST Program Govt. of India (Ref. no. SR/FST/PSI-191/2014, Dated 21.11.2014) for financial grant to the Department. Authors are also thankful to UGC-SAP, Govt. of India (Ref. no F.530/23/DRS-I/2018 (SAP-I) dated 24/04/2018) for the financial grant to the Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratan Das.

Ethics declarations

Conflict of interest

All the authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, P.C., Das, R. Impact of Silver Doping on the Crystalline Size and Intrinsic Strain of MPA-Capped CdTe Nanocrystals: A Study by Williamson–Hall Method and Size–Strain Plot Method. J. of Materi Eng and Perform 30, 652–660 (2021). https://doi.org/10.1007/s11665-020-05358-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05358-9

Keywords

Navigation