Skip to main content
Log in

CuO/ZnTe nanocomposite for photodegradation of malachite green from industrial effluents to clean environment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 12 December 2023

This article has been updated

Abstract

Environmental pollution is a big global issue that should be addressed timely. Most industries discharge their effluents into rivers, lakes, etc. near to those industries. These effluents not only affect the aquatic organism but also indirectly impact on the terrestrial lives. Therefore, the hazardous materials from this toxic effluent must be eliminated before discarding it in the river. Photodegradation removal is the best strategy to degrade noxious dyes under sunlight, which is readily available. In this work, we synthesized CuO/ZnTe nanocomposite with a hydrothermal method applied to mineralize harmful malachite green dye in aqueous medium (water). Different analytical approaches were employed to determine the physical characteristics of the synthesized nanostructure. The photocatalytic results of CuO/ZnTe nanocomposite give better efficiency of 97.2% as compared to CuO (76%) and ZnTe (86%) owing to its high surface area, more significant number of active zones, and prevention from recombination of photogenerated charge carriers. The scavenger tests can also be applied to investigate the mechanism of the mineralization of organic pollutant. The t-BuOH scavenger shows the maximum reduction in photocatalytic efficiency from 97.2 to 61%. Our finding suggests that the fabricated nanocomposite will also apply to another environmental problem with slight modification of morphology, crystallite size, and tuning of the bandgap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Change history

References

  1. M.U. Nisa, A.G. Abid, S. Gouadria, T. Munawar, Z.A. Alrowaili, M. Abdullah et al., Boosted electron-transfer/separation of SnO2/CdSe/Bi2S3 heterostructure for excellent photocatalytic degradation of organic dye pollutants under visible light. Surf. Interfaces. 31, 102012 (2022). https://doi.org/10.1016/J.SURFIN.2022.102012

    Article  CAS  Google Scholar 

  2. M. Abdullah, P. John, M.N. Ashiq, S. Manzoor, M.I. Ghori, M.U. Nisa et al., Development of CuO/CuS/MnO2 ternary nanocomposite for visible light-induced photocatalytic degradation of methylene blue. Nanotechnol. Environ. Eng. 1, 1–11 (2022). https://doi.org/10.1007/S41204-022-00266-W/FIGURES/8

    Article  Google Scholar 

  3. M. Abdullah, P. John, Z. Ahmad, M.N. Ashiq, S. Manzoor, M.I. Ghori et al., Visible-light-driven ZnO/ZnS/MnO2 ternary nanocomposite catalyst: synthesis, characterization and photocatalytic degradation of methylene blue. Appl. Nanosci. 11, 2361–2370 (2021). https://doi.org/10.1007/S13204-021-02008-X/TABLES/1

    Article  CAS  Google Scholar 

  4. M.U. Nisa, S. Manzoor, A.G. Abid, N. Tamam, M. Abdullah, M. Najam-Ul-Haq et al., CdSe supported SnO2 nanocomposite with strongly hydrophilic surface for enhanced overall water splitting. Fuel. 321, 124086 (2022). https://doi.org/10.1016/J.FUEL.2022.124086

    Article  CAS  Google Scholar 

  5. M.P. Singh, P.B. Rathod, S.K. Sakhare, Photocatalytic degradation of dye from various metal/metal oxides derived from diverse plants. Phytonanotechnology (2022). https://doi.org/10.1007/978-981-19-4811-4_14

    Article  Google Scholar 

  6. A. Cruz-Cruz, G. Gallareta-Olivares, A. Rivas-Sanchez, R.B. González-González, I. Ahmed, R. Parra-Saldívar et al., Recent advances in carbon dots based biocatalysts for degrading organic pollutants. Curr. Pollut. Rep. (2022). https://doi.org/10.1007/S40726-022-00228-5/TABLES/1

    Article  Google Scholar 

  7. I. Som, M. Roy, R. Saha, Advances in nanomaterial-based water treatment approaches for photocatalytic degradation of water pollutants. ChemCatChem 12, 3409–3433 (2020). https://doi.org/10.1002/CCTC.201902081

    Article  CAS  Google Scholar 

  8. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova et al., Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomater  (2019). https://doi.org/10.3390/NANO9020202

    Article  Google Scholar 

  9. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur et al., Control of electromagnetic properties in substituted M-type hexagonal ferrites. J. Alloys Compd. 754, 247–256 (2018). https://doi.org/10.1016/J.JALLCOM.2018.04.150

    Article  CAS  Google Scholar 

  10. A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12–xAlxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 393, 253–259 (2015). https://doi.org/10.1016/J.JMMM.2015.05.076

    Article  CAS  Google Scholar 

  11. A.J. Ebele, M. Abou-Elwafa Abdallah, S. Harrad, Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 3, 1–16 (2017). https://doi.org/10.1016/J.EMCON.2016.12.004

    Article  Google Scholar 

  12. Z. Sang, Y. Jiang, Y.K. Tsoi, K.S.Y. Leung, Evaluating the environmental impact of artificial sweeteners: a study of their distributions, photodegradation and toxicities. Water Res. 52, 260–274 (2014). https://doi.org/10.1016/J.WATRES.2013.11.002

    Article  CAS  Google Scholar 

  13. A. Munyengabe, P.P. Ndibewu, L.L. Sibali, P. Ngobeni, Polymeric nanocomposite materials for photocatalytic detoxification of polycyclic aromatic hydrocarbons in aquatic environments-A review. Results Eng. 15, 100530 (2022). https://doi.org/10.1016/J.RINENG.2022.100530

    Article  CAS  Google Scholar 

  14. K.K. Jaiswal, S. Dutta, I. Banerjee, C.B. Pohrmen, R.K. Singh, H.T. Das et al., Impact of aquatic microplastics and nanoplastics pollution on ecological systems and sustainable remediation strategies of biodegradation and photodegradation. Sci. Total Environ. 806, 151358 (2022). https://doi.org/10.1016/J.SCITOTENV.2021.151358

    Article  CAS  Google Scholar 

  15. D.S. Pattanayak, D. Pal, J. Mishra, C. Thakur, K.L. Wasewar, Doped graphitic carbon nitride (g-C3N4) catalysts for efficient photodegradation of tetracycline antibiotics in aquatic environments. Environ. Sci. Pollut. Res. 1, 1–8 (2022). https://doi.org/10.1007/S11356-022-19766-Y/TABLES/1

    Article  Google Scholar 

  16. W. He, Q. Wang, Y. Zhu, K. Wang, J. Mao, X. Xue et al., Innovative technology of municipal wastewater treatment for rapid sludge sedimentation and enhancing pollutants removal with nano-material. Bioresour. Technol. 324, 124675 (2021). https://doi.org/10.1016/J.BIORTECH.2021.124675

    Article  CAS  Google Scholar 

  17. L.T. Gibson, Mesosilica materials and organic pollutant adsorption: part B removal from aqueous solution. Chem. Soc. Rev. 43, 5173–5182 (2014). https://doi.org/10.1039/C3CS60095E

    Article  CAS  Google Scholar 

  18. N. Meunier, P. Drogui, C. Montané, R. Hausler, G. Mercier, J.F. Blais, Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. J. Hazard. Mater. 137, 581–590 (2006). https://doi.org/10.1016/J.JHAZMAT.2006.02.050

    Article  CAS  Google Scholar 

  19. A. Saravanan, P. Senthil Kumar, S. Jeevanantham, S. Karishma, B. Tajsabreen, P.R. Yaashikaa et al., Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere. 280, 130595 (2021). https://doi.org/10.1016/J.CHEMOSPHERE.2021.130595

    Article  CAS  Google Scholar 

  20. D.A. Vinnik, V.V. Kokovkin, V.V. Volchek, V.E. Zhivulin, P.A. Abramov, N.A. Cherkasova et al., Electrocatalytic activity of various hexagonal ferrites in OER process. Mater. Chem. Phys. 270, 124818 (2021). https://doi.org/10.1016/J.MATCHEMPHYS.2021.124818

    Article  CAS  Google Scholar 

  21. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich et al., Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int. 44, 290–300 (2018). https://doi.org/10.1016/J.CERAMINT.2017.09.172

    Article  CAS  Google Scholar 

  22. M. Hassan, Y. Slimani, M.A. Gondal, M.J.S. Mohamed, S. Güner, M.A. Almessiere et al., Structural parameters, energy states and magnetic properties of the novel Se-doped NiFe2O4 ferrites as highly efficient electrocatalysts for HER. Ceram. Int. 48, 24866–24876 (2022). https://doi.org/10.1016/J.CERAMINT.2022.05.140

    Article  CAS  Google Scholar 

  23. S. Shuang, Z. Zhang, The effect of annealing treatment and atom layer deposition to Au/Pt nanoparticles-decorated TiO2 nanorods as photocatalysts. Molecules (2018). https://doi.org/10.3390/MOLECULES23030525

    Article  Google Scholar 

  24. H. Wang, X. Qiu, W. Liu, D. Yang, Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity. Appl. Surf. Sci. 426, 206–216 (2017). https://doi.org/10.1016/J.APSUSC.2017.07.112

    Article  CAS  Google Scholar 

  25. A.A. Manda, K.A. Elsayed, U.I. Gaya, S.A. Haladu, Ä. Ercan, F. Ercan et al., Enhanced photocatalytic degradation of methylene blue by nanocomposites prepared by laser ablation of Bi on CNT-α-Fe2O3 nanoparticles. Opt. Laser Technol. 155, 108430 (2022). https://doi.org/10.1016/J.OPTLASTEC.2022.108430

    Article  CAS  Google Scholar 

  26. K.N. Van, H.T. Huu, V.N. Nguyen Thi, T.L. Thi Le, Q.D. Hoang, Q.V. Dinh et al., Construction of S-scheme CdS/g-C3N4 nanocomposite with improved visible-light photocatalytic degradation of methylene blue. Environ. Res. 206, 112556 (2022). https://doi.org/10.1016/J.ENVRES.2021.112556

    Article  CAS  Google Scholar 

  27. D.J. Jeejamol, K.S. Jai Aultrin, M. Dev Anand, Exploration of CdO properties favoring superior photocatalytic degradation of methylene blue dye by Al3 + doping. Opt. Quantum Electron. 54, 1–25 (2022). https://doi.org/10.1007/S11082-022-03694-9/FIGURES/16

    Article  Google Scholar 

  28. S.M. Abdel-Azim, M.M. Younus, A.S. Dhmees, M. Pannipara, S. Wageh, A.A. Galhoum, Facile synthesis of ZnS/1T-2H MoS2nanocomposite for boosted adsorption/photocatalytic degradation of methylene blue under visiblelight. Environ. Sci. Pollut. Res. 29, 86825–86839 (2022). https://doi.org/10.1007/S11356-022-21255-1/FIGURES/7

    Article  CAS  Google Scholar 

  29. X. Li, X. Tong, S. Yue, C. Liu, A.I. Channa, Y. You et al., Rational design of colloidal AgGaS2/CdSeS core/shell quantum dots for solar energy conversion and light detection. Nano Energy. 89, 106392 (2021). https://doi.org/10.1016/J.NANOEN.2021.106392

    Article  CAS  Google Scholar 

  30. C. Xie, Y. Wang, Z.X. Zhang, D. Wang, L.B. Luo, Graphene/semiconductor hybrid heterostructures for optoelectronic device applications. Nano Today 19, 41–83 (2018). https://doi.org/10.1016/J.NANTOD.2018.02.009

    Article  CAS  Google Scholar 

  31. D.D. Hile, H.C. Swart, S.V. Motloung, L.F. Koao, Zinc selenide semiconductor: synthesis, properties and applications. Nanoscale Compd. Semicond. Optoelectron. Appl. (2022). https://doi.org/10.1016/B978-0-12-824062-5.00001-4

    Article  Google Scholar 

  32. L. Zhang, H. Yang, J. Yu, F. Shao, L. Li, F. Zhang et al., Controlled synthesis and photocatalytic activity of ZnSe nanostructured assemblies with different morphologies and crystalline phases. J. Phys. Chem. C 113, 5434–5443 (2009)

    Article  CAS  Google Scholar 

  33. S. Harish, J. Archana, M. Sabarinathan, M. Navaneethan, K.D. Nisha, S. Ponnusamy et al., Controlled structural and compositional characteristic of visible light active ZnO/CuO photocatalyst for the degradation of organic pollutant. Appl. Surf. Sci. 418, 103–112 (2017). https://doi.org/10.1016/J.APSUSC.2016.12.082

    Article  CAS  Google Scholar 

  34. C. Wu, Y. Sun, Z. Cui, F. Song, J. Wang, Fabrication of CuS/CuO nanowire heterostructures on copper mesh with improved visible light photocatalytic properties. J. Phys. Chem. Solids. 140, 109355 (2020). https://doi.org/10.1016/J.JPCS.2020.109355

    Article  CAS  Google Scholar 

  35. R.S. Jebasingh, J.A.S.M.V. Stanley, P.K. Ponmani, P. Shekinah, Excellent photocatalytic degradation of methylene blue, rhodamine B and methyl orange dyes by Ag-ZnO nanocomposite under natural sunlight irradiation. Optik (Stuttg) 231, 166518 (2021). https://doi.org/10.1016/J.IJLEO.2021.166518

    Article  Google Scholar 

  36. L. Guo, N. Okinaka, L. Zhang, S. Watanabe, Molten salt-assisted shape modification of CaFe2O4 nanorods for highly efficient photocatalytic degradation of methylene blue. Opt. Mater. (Amst). 119, 111295 (2021). https://doi.org/10.1016/J.OPTMAT.2021.111295

    Article  CAS  Google Scholar 

  37. R.H. Waghchaure, V.A. Adole, B.S. Jagdale, Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and eriochrome black T dyes by modified ZnO nanocatalysts: a concise review. Inorg. Chem. Commun. 143, 109764 (2022). https://doi.org/10.1016/J.INOCHE.2022.109764

    Article  CAS  Google Scholar 

  38. S. Qi, K. Zhang, Y. Zhang, R. Zhang, H. Xu, TiO2/Zn0.5Cd0.5S heterojunction for efficient photocatalytic degradation of methylene blue and its photocatalytic mechanism. Chem. Phys. Lett. 798, 139614 (2022). https://doi.org/10.1016/J.CPLETT.2022.139614

    Article  CAS  Google Scholar 

  39. M. Mahanthappa, N. Kottam, S. Yellappa, Enhanced photocatalytic degradation of methylene blue dye using CuSCdS nanocomposite under visible light irradiation. Appl. Surf. Sci. 475, 828–838 (2019). https://doi.org/10.1016/J.APSUSC.2018.12.178

    Article  CAS  Google Scholar 

  40. P.A. Luque, H.E. Garrafa-Gálvez, O. Nava, A. Olivas, M.E. Martínez-Rosas, A.R. Vilchis-Nestor et al., Efficient sunlight and UV photocatalytic degradation of methyl orange, methylene blue and rhodamine B, using Citrus × paradisi synthesized SnO2 semiconductor nanoparticles. Ceram. Int. 47, 23861–23874 (2021). https://doi.org/10.1016/J.CERAMINT.2021.05.094

    Article  CAS  Google Scholar 

  41. M. Abdullah, P. John, M.N. Ashiq, S. Manzoor, M.I. Ghori, M.U. Nisa et al., Development of CuO/CuS/MnO2 ternary nanocomposite for visible light-induced photocatalytic degradation of methylene blue. Nanotechnol. Environ. Eng. 8, 63–73 (2023). https://doi.org/10.1007/S41204-022-00266-W/FIGURES/8

    Article  CAS  Google Scholar 

  42. T. Ge, L. Shen, J. Li, Y. Zhang, Y. Zhang, Morphology-controlled hydrothermal synthesis and photocatalytic cr(VI) reduction properties of α-Fe2O3. Colloids Surf. Physicochem. Eng. Asp. 635, 128069 (2022). https://doi.org/10.1016/J.COLSURFA.2021.128069

    Article  CAS  Google Scholar 

  43. S. Roguai, A. Djelloul, Structural, microstructural and photocatalytic degradation of methylene blue of zinc oxide and Fe-doped ZnO nanoparticles prepared by simple coprecipitation method. Solid State Commun. 334–335, 114362 (2021). https://doi.org/10.1016/J.SSC.2021.114362

    Article  Google Scholar 

  44. O. Kamoun, A. Gassoumi, M. Shkir, N.E. Gorji, N. Turki-Kamoun, Turki-Kamoun, Synthesis and Characterization of Highly Photocatalytic Active Ce and Cu Co-Doped Novel Spray Pyrolysis Developed MoO3 Films for Photocatalytic Degradation of Eosin-Y Dye. Coatings  (2022). https://doi.org/10.3390/COATINGS12060823

    Article  Google Scholar 

  45. A. Shoneye, J. Sen Chang, M.N. Chong, J. Tang, Recent progress in photocatalytic degradation of chlorinated phenols and reduction of heavy metal ions in water by TiO2-based catalysts.  Intern. Mater. Rev. 67, 47–64 (2021). https://doi.org/10.1080/09506608.2021.1891368

    Article  CAS  Google Scholar 

  46. M. Noor, F. Sharmin, M.A.A. Mamun, S. Hasan, M.A. Hakim, M.A. Basith, Effect of Gd and Y co-doping in BiVO4 photocatalyst for enhanced degradation of methylene blue dye. J. Alloys Compd. 895, 162639 (2022). https://doi.org/10.1016/J.JALLCOM.2021.162639

    Article  CAS  Google Scholar 

  47. Z.A. Ujjan, M.A. Bhatti, A.A. Shah, A. Tahira, N.M. Shaikh, S. Kumar et al., Simultaneous doping of sulfur and chloride ions into ZnO nanorods for improved photocatalytic properties towards degradation of methylene blue. Ceram. Int. 48, 5535–5545 (2022). https://doi.org/10.1016/J.CERAMINT.2021.11.098

    Article  CAS  Google Scholar 

  48. M.E. El-Naggar, A.R. Wassel, K. Shoueir, Visible-light driven photocatalytic effectiveness for solid-state synthesis of ZnO/natural clay/TiO2 nanoarchitectures towards complete decolorization of methylene blue from aqueous solution. Environ. Nanatechnol. Monit. Manag. 15, 100425 (2021). https://doi.org/10.1016/J.ENMM.2020.100425

    Article  CAS  Google Scholar 

  49. L. Liu, Y. Liu, X. Wang, N. Hu, Y. Li, C. Li et al., Synergistic effect of B-TiO2 and MIL-100(fe) for high-efficiency photocatalysis in methylene blue degradation. Appl. Surf. Sci. 561, 149969 (2021). https://doi.org/10.1016/J.APSUSC.2021.149969

    Article  CAS  Google Scholar 

  50. L. Frolova, K. Sukhyy, The effect of the cation in spinel ferrite MeFe2O4 (me = Co, Ni, Mn) on the photocatalytic properties in the degradation of methylene blue. Mater. Today Proc. 62, 7726–7730 (2022). https://doi.org/10.1016/J.MATPR.2022.03.503

    Article  CAS  Google Scholar 

  51. M. Ramesh, N and Fe doped NiO nanoparticles for enhanced photocatalytic degradation of azo dye methylene blue in the presence of visible light. SN Appl. Sci. 3, 1–13 (2021). https://doi.org/10.1007/S42452-021-04803-1/FIGURES/12

    Article  Google Scholar 

  52. H.X. Wang, R. Wu, S.H. Wei, L.R. Yu, J.K. Jian, J. Hou et al., One-pot solvothermal synthesis of ZnTe/RGO nanocomposites and enhanced visible-light photocatalysis. Chin. Chem. Lett. 27, 1572–1576 (2016). https://doi.org/10.1016/J.CCLET.2016.03.003

    Article  CAS  Google Scholar 

  53. S. Surender, M.N. Kavipriyah, S. Balakumar, Synergistic effect in g-C3N4/CuO nanohybrid structures as efficient electrode material for supercapacitor applications. Inorg. Chem. Commun. 150, 110557 (2023). https://doi.org/10.1016/J.INOCHE.2023.110557

    Article  CAS  Google Scholar 

  54. F. Mollarasouli, M.R. Majidi, K. Asadpour-Zeynali, Facile synthesis of ZnTe/quinhydrone nanocomposite as a promising catalyst for electro-oxidation of ethanol in alkaline medium. Int. J. Hydrog. Energy 44, 22085–22097 (2019). https://doi.org/10.1016/J.IJHYDENE.2019.06.071

    Article  CAS  Google Scholar 

  55. T.M. Breault, B.M. Bartlett, Lowering the band gap of anatase-structured TiO 2 by coalloying with nb and N: electronic structure and photocatalytic degradation of methylene blue dye. J. Phys. Chem. C 116, 5986–5994 (2012). https://doi.org/10.1021/JP2078456/SUPPL_FILE/JP2078456_SI_001.PDF

    Article  CAS  Google Scholar 

  56. S. Umrao, S. Abraham, F. Theil, S. Pandey, V. Ciobota, P.K. Shukla et al., A possible mechanism for the emergence of an additional band gap due to a Ti–O–C bond in the TiO2–graphene hybrid system for enhanced photodegradation of methylene blue under visible light. RSC Adv. 4, 59890–59901 (2014). https://doi.org/10.1039/C4RA10572A

    Article  CAS  Google Scholar 

  57. A.M. Mebed, A.M. Abd-Elnaiem, A.H. Alshammari, T.A. Taha, M. Rashad, D. Hamad, Controlling the structural properties and optical bandgap of PbO–Al2O3 nanocomposites for enhanced photodegradation of methylene blue. Catalysis 12, 142 (2022). https://doi.org/10.3390/CATAL12020142

    Article  CAS  Google Scholar 

  58. G. He, J. Ding, J. Zhang, Q. Hao, H. Chen, One-step ball-milling preparation of highly photocatalytic active CoFe2O4-reduced graphene oxide heterojunctions for organic dye removal. Ind. Eng. Chem. Res. 54, 2862–2867 (2015). https://doi.org/10.1021/IE504706W/SUPPL_FILE/IE504706W_SI_001.PDF

    Article  CAS  Google Scholar 

  59. A.A.M. Sakib, S.M. Masum, J. Hoinkis, R. Islam, M.A.I. Molla, Synthesis of CuO/ZnO nanocomposites and their application in photodegradation of toxic textile dye. J. Compos. Sci. (2019). https://doi.org/10.3390/JCS3030091

    Article  Google Scholar 

  60. Y. Guo, J. Wang, Z. Tao, F. Dong, K. Wang, X. Ma et al., Facile synthesis of mesoporous CdS nanospheres and their application in photocatalytic degradation and adsorption of organic dyes. CrystEngComm. 14, 1185–1188 (2012). https://doi.org/10.1039/C2CE06172D

    Article  CAS  Google Scholar 

  61. M. Aadil, S. Zulfiqar, M.F. Warsi, P.O. Agboola, I. Shakir, M. Shahid et al., Mesoporous and Macroporous Ag-doped Co3O4 nanosheets and their superior photo-catalytic properties under solar light irradiation. Ceram. Int. 47, 9806–9817 (2021). https://doi.org/10.1016/J.CERAMINT.2020.12.121

    Article  CAS  Google Scholar 

  62. I. Halomoan, Y. Yulizar, R.M. Surya, D.O.B. Apriandanu, Facile preparation of CuO-Gd2Ti2O7 using Acmella uliginosa leaf extract for photocatalytic degradation of malachite green. Mater. Res. Bull. 150, 111726 (2022). https://doi.org/10.1016/J.MATERRESBULL.2021.111726

    Article  CAS  Google Scholar 

  63. Y. Yulizar, D.O.B. Apriandanu, R.I. Ashna, La2CuO4-decorated ZnO nanoparticles with improved photocatalytic activity for malachite green degradation. Chem. Phys. Lett. 755, 137749 (2020). https://doi.org/10.1016/J.CPLETT.2020.137749

    Article  CAS  Google Scholar 

  64. L. Anju Chanu, K. Jugeshwar Singh, K. Nomita Devi, UV light illuminated photodegradation of malachite green dye using ZnO/CuO nanocomposites. Mater. Today Proc. 65, 2865–2870 (2022). https://doi.org/10.1016/J.MATPR.2022.06.431

    Article  CAS  Google Scholar 

  65. R. Yadav, T.S. Chundawat, P.K. Surolia, D. Vaya, Photocatalytic degradation of textile dyes using β-CD-CuO/ZnO nanocomposite. J. Phys. Chem. Solids. 165, 110691 (2022). https://doi.org/10.1016/J.JPCS.2022.110691

    Article  CAS  Google Scholar 

  66. W. Wu, X. Xiao, S. Zhang, F. Ren, C. Jiang, Facile method to synthesize magnetic iron oxides/TiO 2 hybrid nanoparticles and their photodegradation application of methylene blue. Nanoscale Res. Lett. 6, 1–15 (2011). https://doi.org/10.1186/1556-276X-6-533/FIGURES/10

    Article  Google Scholar 

  67. J. Ma, Z. Tian, L. Li, Y. Lu, X. Xu, J. Hou, Loading Nano-CuO on TiO2 nanomeshes towards efficient photodegradation of methylene blue. Catalysts 12, 383 (2022). https://doi.org/10.3390/CATAL12040383

    Article  CAS  Google Scholar 

  68. E. Rusman, H. Heryanto, A.N. Fahri, R. Rahmat, I. Mutmainna, D. Tahir, Green synthesis ZnO/TiO2 for high recyclability rapid sunlight photodegradation wastewater. MRS Adv. 7, 444–449 (2022). https://doi.org/10.1557/S43580-021-00201-2/TABLES/1

    Article  CAS  Google Scholar 

  69. M.A. Ashraf, W.X. Peng, A. Fakhri, M. Hosseini, H. Kamyab, S. Chelliapan, Manganese disulfide-silicon dioxide nano-material: synthesis, characterization, photocatalytic, antioxidant and antimicrobial studies. J. Photochem. Photobiol. B Biol. 198, 111579 (2019). https://doi.org/10.1016/J.JPHOTOBIOL.2019.111579

    Article  CAS  Google Scholar 

  70. M. Rajesh Kumar, G. Murugadoss, A.N. Pirogov, R. Thangamuthu, A facile one step synthesis of SnO2/CuO and CuO/SnO2 nanocomposites: photocatalytic application. J. Mater. Sci. Mater. Electron. 29, 13508–13515 (2018). https://doi.org/10.1007/S10854-018-9476-3/FIGURES/6

    Article  CAS  Google Scholar 

  71. T. Senasu, T. Chankhanittha, K. Hemavibool, S. Nanan, Visible-light-responsive photocatalyst based on ZnO/CdS nanocomposite for photodegradation of reactive red azo dye and ofloxacin antibiotic. Mater. Sci. Semicond. Process. 123, 105558 (2021). https://doi.org/10.1016/J.MSSP.2020.105558

    Article  CAS  Google Scholar 

  72. F. El-Sayed, V. Ganesh, M.S.A. Hussien, T.H. AlAbdulaal, H.Y. Zahran, I.S. Yahia et al., Facile synthesis of Y2O3/CuO nanocomposites for photodegradation of dyes/mixed dyes under UV- and Visible light irradiation. J. Mater. Res. Technol. 19, 4867–4880 (2022). https://doi.org/10.1016/J.JMRT.2022.06.163

    Article  CAS  Google Scholar 

  73. M. Dubey, N.V. Challagulla, S. Wadhwa, R. Kumar, Ultrasound assisted synthesis of magnetic Fe3O4/ɑ-MnO2 nanocomposite for photodegradation of organic dye. Colloids Surf. Physicochem. Eng. Asp. 609, 125720 (2021). https://doi.org/10.1016/J.COLSURFA.2020.125720

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation. Ministry of Education in Saudi Arabia for funding this research work through the project number R1-44-0101.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed to the work, and they are known with the submission.

Corresponding author

Correspondence to Hafiz Muhammad Tahir Farid.

Ethics declarations

conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, F.F., Gouadria, S., Abdullah, M. et al. CuO/ZnTe nanocomposite for photodegradation of malachite green from industrial effluents to clean environment. J Mater Sci: Mater Electron 34, 2150 (2023). https://doi.org/10.1007/s10854-023-11600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11600-6

Navigation