Skip to main content
Log in

Structural and optical properties of chemically synthesized copper oxide nanoparticles and their photocatalytic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The synthesis, characterization, and optical properties of copper oxide nanorods (CuO NRs) based on facile one-step chemical methods using different precursors has been investigated. The field emission transmission electron microscopy analysis confirmed the existence of high crystalline CuO NRs with average length of 100 ~ 500 nm along with the diameter of 20 ~ 150 nm. The nanopetals/nanoflowers with large surface area has been confirmed by the SEM images. Phase purity of the as-synthesized sample having nanocrystalline nature with a monoclinic structure has been confirmed by X-ray diffraction patterns. FTIR was used to verify the various functional groups of CuO NRs. The UV–Visible absorption spectra, photoluminescence, and time-correlated single photons counting were used to study the optical properties. The calculated bandgap values of CuO NRs are 2.86 eV and 2.89 eV for two samples (S-1 and S-2), respectively. Investigation and analysis of the absorbance, reflectance, transmittance, refractive index, extinction coefficient, real and imaginary parts of the dielectric constant, and optical conductivity have been simulated for both samples. The fluorescence lifetimes of S-1 and S-2 are 1.00 ns and 0.98 ns, respectively. In the presence of hydrogen peroxide, the CuO NRs show excellent enhanced catalytic activities for degradation of methylene blue under visible light irradiation with degradation efficiency > 80% within 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article.

References

  1. M.S. Chavali, M.P. Nikolova, SN Appl. Sci. 1, 607 (2019)

    Article  CAS  Google Scholar 

  2. Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu, S. Yan, C. Ge, Q. Zhang, X. Wang, X. Shang, S. Fan, Y. Long, L. Gu, G.-X. Miao, G. Yu, J.S. Moodera, Nat. Mater. 20, 76–83 (2021)

    Article  Google Scholar 

  3. Y. Sun, G. Chen, S. Xi, Z.J. Xu, ACS Catal. 11, 13947–13954 (2021)

    Article  CAS  Google Scholar 

  4. T. Naseem, T. Durrani, J. Environ. Chem. Ecotoxicol. 3, 59–75 (2021)

    Article  CAS  Google Scholar 

  5. C.B. Anucha, I. Altin, E. Bacaksiz, V.N. Stathopoulos, Chem. Eng. J. Adv. 10, 100262 (2022)

    Article  CAS  Google Scholar 

  6. M. Arakha, S. Pal, D. Samantarrai, T.K. Panigrahi, B.C. Mallick, K. Pramanik, B. Mallick, S. Jha, Sci. Rep. 5, 14813 (2015)

    Article  CAS  Google Scholar 

  7. A. Krishnan, A. Swarnalal, D. Das, M. Krishnan, V.S. Saji, S.M.A. Shibli, J. Environ. Sci. 139, 389–417 (2023)

    Article  Google Scholar 

  8. B. Balamurugan, B.R. Mehta, Thin Solid Films. 396, 90–96 (2001)

    Article  CAS  Google Scholar 

  9. G. Ren, D. Hu, E. Cheng, M. Vargas-Reus, P. Reip, R. Allaker, Int. J. Antimicrob. Agents. 33, 587–590 (2009)

    Article  CAS  Google Scholar 

  10. M.I. Said, A.A. Othman, Abd Elhakeem, RSC Adv. 11, 37801–37813 (2021)

    Article  CAS  Google Scholar 

  11. A. Aslani, V. Oroojpour, Phys. B: Condens. Matter. 406, 144–149 (2011)

    Article  CAS  Google Scholar 

  12. A. Pramothkumar, N. Senthilkumar, R.M. Jenila, M. Durairaj, T.C.S. Girisun, I.V. Potheher, J. Alloys Compd. 878, 160332 (2021)

    Article  CAS  Google Scholar 

  13. H.M. Alhusaiki Alghamdi, Opt. Mater. (Amst). 134, 113101 (2022)

    Article  CAS  Google Scholar 

  14. A.F. Zedan, A.T. Mohamed, M.S. El-Shall, S.Y. AlQaradawi, A.S. AlJaber, RSC Adv. 8, 19499–19511 (2018)

    Article  CAS  Google Scholar 

  15. H. Siddiqui, M.R. Parra, P. Pandey, M.S. Qureshi, F.Z. Haque, J. Sci. : Adv. Mate Dev. 5, 104–110 (2020)

    Google Scholar 

  16. S. Rajkumar, E. Elanthamilan, T.E. Balaji, A. Sathiyan, N.E. Jafneel, J.P. Merlin, J. Alloys Compd. 849, 156582 (2020)

    Article  CAS  Google Scholar 

  17. T.H. Tran, V.T. Nguyen, Int. Sch. Res. Notices. 2014, 856592 (2014)

    Google Scholar 

  18. Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen, M. Li, J. Nanomater. 2020, 8917013 (2020)

    Article  Google Scholar 

  19. A.G. Bekru, O.A. Zelekew, D.M. Andoshe, F.K. Sabir, R. Eswaramoorthy, J. Nanotechnol. 2021, 5581621 (2021)

    Article  Google Scholar 

  20. R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, J. Ind. Eng. Chem. 31, 173–184 (2015)

    Article  CAS  Google Scholar 

  21. H. Siddiqui, M.S. Qureshi, F.Z. Haque, Optik (Stuttg). 127, 2740–2747 (2016)

    Article  CAS  Google Scholar 

  22. N. Patil, R. Bhaskar, V. Vyavhare, R. Dhadge, V. Khaire, Y. Patil, Int. J. Curr. Pharm. Res. 13, 11–16 (2021)

    Article  CAS  Google Scholar 

  23. E.M. Modan, A.G. Plăiașu, The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science. 43, 53–60 (2020). https://doi.org/10.35219/mms.2020.1.08

  24. X. Qu, P.J.J. Alvarez, Q. Li, Water Res. 47, 3931–3946 (2013)

    Article  CAS  Google Scholar 

  25. T. Wang, L. Xu, J. Cui, J. Wu, Z. Li, Y. Wu, B. Tian, Y. Tian, Nano Lett. 22, 6664–6670 (2022)

    Article  CAS  Google Scholar 

  26. B. Nahar, S.B. Chaity, M.A. Gafur, M.Z. Hossain, J. Nanomater. 2023, 2892081 (2023)

    Article  Google Scholar 

  27. Y. Guo, X. Tong, N. Yang, Nanomicro Lett. 15, 77 (2023)

    CAS  Google Scholar 

  28. Y. Shiraishi, Y. Ueda, A. Soramoto, S. Hinokuma, T. Hirai, Nat. Commun. 11, 3386 (2020)

    Article  CAS  Google Scholar 

  29. J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, H. Jiao, Appl. Catal. B 240, 1–8 (2019)

    Article  CAS  Google Scholar 

  30. A.K. Sibhatu, G.K. Weldegebrieal, S. Sagadevan, N.N. Tran, V. Hessel, Chemosphere. 300, 134623 (2022)

    Article  CAS  Google Scholar 

  31. J. Aien, A. Khan, S. Haq, A. Khan, K. Elmnasri, M. Ali, M. AL-Harbi, M. Alghonaim, S. Alsalamah, A. Qurtam, F. Boufahja, A. Hedfi, D. Mohamed, Cryst. (Basel). 13, 330 (2023)

    CAS  Google Scholar 

  32. K. Ungeheuer, K.W. Marszalek, M. Mitura-Nowak, M. Perzanowski, P. Jelen, M. Marszalek, M. Sitarz, Int. J. Mol. Sci. 23, 4541 (2022)

    Article  CAS  Google Scholar 

  33. M.A. Khan, N. Nayan, Nanomater 10, 1298 (2020)

    Article  CAS  Google Scholar 

  34. M. Chawla, V. Sharma, J.K. Randhawa, Electrocatalysis. 8, 27–35 (2016)

    Article  Google Scholar 

  35. P. Singh, K.R.B. Singh, J. Singh, S.N. Das, R.P. Singh, RSC Adv. 11, 18050–18060 (2021)

    Article  CAS  Google Scholar 

  36. G. Cheng, Micro Nano Lett. IET 6, 774–776 (2011)

    Article  CAS  Google Scholar 

  37. C. Xu, Y. Liu, G. Xu, G. Wang, Mater. Res. Bull. 37, 2365–2372 (2002)

    Article  CAS  Google Scholar 

  38. C.H. Lo, T.T. Tsung, L.C. Chen, J. Vac Sci. Technol. B: Nanotechnol Microelectron. 23, 2394–2397 (2005)

    Article  CAS  Google Scholar 

  39. C. Yang, X. Su, F. Xiao, J. Jian, J. Wang, Sens. Actuators B Chem. 158, 299–303 (2011)

    Article  CAS  Google Scholar 

  40. A. Radhakrishnan, B. Beena, Indian J. Adv. Chem. Sci. 2, 158–161 (2014)

    CAS  Google Scholar 

  41. M.D.K. Peddi, R. R, Int. J. Appl. Pharm. 9, 71 (2017)

    Google Scholar 

  42. M. Patel, S. Mishra, R. Verma, D. Shikha, Mater. Discov. 2, 1 (2022)

    Article  Google Scholar 

  43. N. Kumar, S.S. Parui, S. Limbu, D.K. Mahato, N. Tiwari, R.N. Chauhan, Mater. Today: Proc. 41, 237–241 (2021)

    CAS  Google Scholar 

  44. S. Sagadevan, K. Pal, Z. Chowdhury, J. Mater. Sci. Mater. Electron. 28, 12591–12597 (2017)

    Article  CAS  Google Scholar 

  45. T. Ghosh, S. Pradhan, S. Sarkar, A. Bhunia, J. Mater. Sci. Mater. Electron. 32, 19157–19178 (2021)

    Article  CAS  Google Scholar 

  46. E.C. Okpara, O.E. Fayemi, Mater. Res. Express. 6, 105056 (2019)

    Article  CAS  Google Scholar 

  47. N.R. Dhineshbabu, V. Rajendran, N. Nithyavathy, R. Vetumperumal, Appl. Nanosci. 6, 933–939 (2016)

    Article  CAS  Google Scholar 

  48. M.M. Abdelhamied, A.K. Atta, A. Abdelreheem, A.T.M. Farag, M. El Okr, J. Mater. Sci. Mater. Electron. 31, 22629–22641 (2020)

    Article  CAS  Google Scholar 

  49. K.G. Mondal, P. Jana, S. Saha, Bull. Of Mate Sci. 46(1), 15 (2023)

    Article  CAS  Google Scholar 

  50. M.H. Kabir, H. Ibrahim, S.A. Ayon, M.M. Billah, S. Neaz, Heliyon 8, e10609 (2022)

    Article  CAS  Google Scholar 

  51. R. Mahle, P. Kumbhakar, A. Pramanik, S. Sahoo, P. Kumbhakar, R. Mukherjee, C. Tiwary, R. Banerjee, Mater. Adv. 1, 1168 (2020)

    Article  CAS  Google Scholar 

  52. S. Dagher, Y. Haik, A. Ayesh, N. Tit, J. Lumin. 151, 149–154 (2014)

    Article  CAS  Google Scholar 

  53. S. Limbu, L.R. Singh, G.S. Okram, RSC Adv. 10, 35619–35635 (2020)

    Article  CAS  Google Scholar 

  54. J. Jayabharathi, C. Karunakaran, A. Arunpandiyan, P. Vinayagamoorthy, RSC Adv. 4, 59908–59916 (2014)

    Article  CAS  Google Scholar 

  55. K. Dulta, G. Koşarsoy Ağçeli, P. Chauhan, R. Jasrotia, P.K. Chauhan, J.O. Ighalo, Sustain. Environs Res. 32, 2 (2022)

    Article  CAS  Google Scholar 

  56. P. Kumbhakar, A. Pramanik, S. Biswas, A.K. Kole, R. Sarkar, P. Kumbhakar, J. Hazard. Mater. 360, 193–203 (2018)

    Article  CAS  Google Scholar 

  57. M. Ramesh, Water Pract. Technol. 16, 1078–1090 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledged to the UGC-SAP and DST-FIST sponsored department of Physics, Vidyasagar University for research facilities. TK acknowledges UGC-DAE-CSR for project CRS/2021-22/02/495 for partial financial support. Authors are acknowledged to the central research facilities, IIT Kharagpur and University Science Instrumentation Centre (USIC), Vidyasagar University for various characterization facilities and  also acknowledged to Arindam Samanta, Tyndall National Institute, Ireland, Debabrata Maji and Sumana Paul, IIT Guwahati, India.

Funding

The authors acknowledged to the UGC-SAP and DST-FIST for their support to the department of Physics, Vidyasagar University. TK acknowledges UGC-DAE-CSR project CRS/2021-22/02/495 for partial financial support.

Author information

Authors and Affiliations

Authors

Contributions

SR, KGM, and PCJ assisted to select the topic of the research and supervise the complete study. SR prepared the samples, performed the experiments, and collected the data. All the authors helped to analyze the data.  All authors read and approved the final manuscript.

Corresponding author

Correspondence to Krishna Gopal Mondal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any human or animal investigations conducted by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakshit, S., Mondal, K.G., Jana, P.C. et al. Structural and optical properties of chemically synthesized copper oxide nanoparticles and their photocatalytic application. J Mater Sci: Mater Electron 34, 2141 (2023). https://doi.org/10.1007/s10854-023-11593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11593-2

Navigation