Skip to main content
Log in

Isolation of current–voltage characteristics for each layer of a two-layer dielectric using the example of Al–Al2O3–Ta2O5–Ni diodes with different tantalum oxide thicknesses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The metal–insulator–metal diodes have been investigated in which the dielectric consists of two layers: tantalum oxide and alumina, and alumina arises as a result of the interaction of aluminum with tantalum oxide during the deposition of a contact. A technique has been developed for analyzing a diode with a two-layer dielectric in which the thickness of one dielectric layer changes, while the other remains constant. For this case, an algorithm is proposed for dividing the voltage drop on each layer separately and calculating the current–voltage characteristics for each of the layers connected in series. After that, using known methods, it is possible to determine both the characteristics of the material and potential barriers at the interface between the metal and the dielectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C.A. Reynaud, D. Duché, J.-J. Simon, E. Sanchez-Adaime, O. Margeat, J. Ackermann, V. Jangid, C. Lebouin, D. Brunel, F. Dumur, D. Gigmes, G. Berginc, C.A. Nijhuis, L. Escoubas, Rectifying antennas for energy harvesting from the microwaves to visible light: a review. Prog. Quantum Electron. 72, 100265 (2020). https://doi.org/10.1016/j.pquantelec.2020.100265

    Article  Google Scholar 

  2. N.A. Islam, S. Choi, Bowtie nanoantenna coupled metal-oxide-silicon (p-Doped) diode for 283 THz IR rectification. Nanomaterials (Basel, Switzerland) (2022). https://doi.org/10.3390/nano12223940/

    Article  Google Scholar 

  3. R.L. Bailey, A proposed new concept for a solar-energy converter. J Eng Power 94, 73–77 (1972). https://doi.org/10.1115/1.3445660

    Article  Google Scholar 

  4. S. Grover, G. Moddel, Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J. Photovolt. 1, 78–83 (2011). https://doi.org/10.1109/JPHOTOV.2011.2160489

    Article  Google Scholar 

  5. S. Joshi, G. Moddel, Efficiency limits of rectenna solar cells: theory of broadband photon-assisted tunneling. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4793425

    Article  Google Scholar 

  6. A. Sharma, V. Singh, T.L. Bougher, B.A. Cola, A carbon nanotube optical rectenna. Nat. Nanotechnol. 10, 1027–1032 (2015). https://doi.org/10.1038/nnano.2015.220

    Article  CAS  Google Scholar 

  7. L. Tizani, Y. Abbas, A.M. Yassin, B. Mohammad, M.’d Rezeq, Single wall carbon nanotube based optical rectenna. RSC Adv. 11, 24116–24124 (2021). https://doi.org/10.1039/D1RA04186J

    Article  CAS  Google Scholar 

  8. A.Y. Elsharabasy, M.H. Bakr, M.J. Deen, Towards an optimal MIIM diode for rectennas at 10.6 μm. Results Mater. 11, 100204 (2021). https://doi.org/10.1016/j.rinma.2021.100204

    Article  Google Scholar 

  9. A. Alodhayb, A. Meredov, P. Dawar, A simulation study of multi-junction insulator tunnel diode for solar energy harvesting applications. Mater. Res. Express 8, 95509 (2021). https://doi.org/10.1088/2053-1591/ac28b6

    Article  Google Scholar 

  10. D. Matsuura, M. Shimizu, H. Yugami, High-current density and high-asymmetry MIIM diode based on oxygen-non-stoichiometry controlled homointerface structure for optical rectenna. Sci. Rep. 9, 19639 (2019). https://doi.org/10.1038/s41598-019-55898-x

    Article  CAS  Google Scholar 

  11. S.B. Herner, A.D. Weerakkody, A. Belkadi, G. Moddel, High performance MIIM diode based on cobalt oxide/titanium oxide. Appl. Phys. Lett. (2017). https://doi.org/10.1063/1.4984278

    Article  Google Scholar 

  12. S. Krishnan, S. Bhansali, E. Stefanakos, Y. Goswami, Thin film metal–insulator–metal junction for millimeter wave detection. Procedia Chem 1, 409–412 (2009). https://doi.org/10.1016/j.proche.2009.07.102

    Article  CAS  Google Scholar 

  13. C. Fumeaux, W. Herrmann, F.K. Kneubühl, H. Rothuizen, Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation. Infrared Phys. Technol. 39, 123–183 (1998). https://doi.org/10.1016/S1350-4495(98)00004-8

    Article  CAS  Google Scholar 

  14. S. Grover, G. Moddel, Metal single-insulator and multi-insulator diodes for rectenna solar cells, in Rectenna Solar Cells. ed. by G. Moddel, S. Grover (Springer, New York, NY, 2013), pp.89–109. https://doi.org/10.1007/978-1-4614-3716-1_5

    Chapter  Google Scholar 

  15. S. Joshi, G. Moddel, Simple figure of merit for diodes in optical rectennas. IEEE J. Photovolt. 6, 668–672 (2016). https://doi.org/10.1109/JPHOTOV.2016.2541460

    Article  Google Scholar 

  16. M.N. Gadalla, M. Abdel-Rahman, A. Shamim, Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Sci. Rep. 4, 4270 (2014). https://doi.org/10.1038/srep04270

    Article  CAS  Google Scholar 

  17. M.R. Abdel-Rahman, F.J. González, G.D. Boreman, Antenna-coupled metal-oxide-metal diodes for dual-band detection at 92.5 GHz and 28 THz. Electron. Lett. 40, 116 (2004). https://doi.org/10.1049/el:20040105

    Article  Google Scholar 

  18. G. Pacchioni, S. Valeri, Oxide Ultrathin Films (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011). https://doi.org/10.1002/9783527640171

    Book  Google Scholar 

  19. S.B. Tekin, S. Almalki, H. Finch, A. Vezzoli, L. O’Brien, V.R. Dhanak, S. Hall, I.Z. Mitrovic, Electron affinity of metal oxide thin films of TiO2, ZnO, and NiO and their applicability in 28.3 THz rectenna devices. J. Appl. Phys. (2023). https://doi.org/10.1063/5.0157726

    Article  Google Scholar 

  20. J. Müller, P. Polakowski, S. Mueller, T. Mikolajick, Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects. ECS J. Solid State Sci. Technol. 4, N30–N35 (2015). https://doi.org/10.1149/2.0081505jss

    Article  CAS  Google Scholar 

  21. S.V. Bulyarsky, K.I. Litvinova, E.P. Kirilenko, G.A. Rudakov, A.A. Dudin, Photoluminescence of hafnium oxide synthesized by atomic layer deposition. Phys. Solid State 65, 228 (2023). https://doi.org/10.21883/PSS.2023.02.55405.524

    Article  Google Scholar 

  22. S.V. Bulyarskiy, D.A. Koiva, G.A. Rudakov, G.G. Gusarov, Thermodynamic analysis of stoichiometric composition changes in the Ti × O y films at RF magnetron sputtering and modeling of their conductivity. Phys. Status Solidi (b) (2022). https://doi.org/10.1002/pssb.202100407

    Article  Google Scholar 

  23. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochemistry 58, 104619 (2019). https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  CAS  Google Scholar 

  24. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  25. B. Hegyi, Á. Csurgay, W. Porod, Investigation of the nonlinearity properties of the DC I–V characteristics of metal–insulator–metal (MIM) tunnel diodes with double-layer insulators. J. Comput. Electron. 6, 159–162 (2007). https://doi.org/10.1007/s10825-006-0083-9

    Article  CAS  Google Scholar 

  26. J. Kübler, K.-H. Höck, H. Böttger, V. V. Bryksin, Hopping Conduction in Solids, VCH-Verlagsgesellschaft, Weinheim, Deerfield Beach-Florida 1985. 398 Seiten, Preis: DM 140, Berichte der Bunsengesellschaft für physikalische Chemie 91 (1987) 77. https://doi.org/10.1002/bbpc.19870910117

  27. I. Nemr-Noureddine, N. Sedghi, I.Z. Mitrovic, S. Hall, Barrier tuning of atomic layer deposited Ta2O5 and Al2O3 in double dielectric diodes. J. Vac. Sci Technol. Nanotechnol. Microelectron. Mater. Process Meas. Phenom. (2017). https://doi.org/10.1116/1.4974219

    Article  Google Scholar 

  28. N. Alimardani, J.F. Conley, Step tunneling enhanced asymmetry in asymmetric electrode metal–insulator–insulator–metal tunnel diodes. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4799964

    Article  Google Scholar 

  29. I. Azad, M.K. Ram, D.Y. Goswami, E. Stefanakos, Design and fabrication of metal–insulator–metal diode for high frequency applications, in Infrared Technology and Applications XLIII. ed. by B.F. Andresen, G.F. Fulop, C.M. Hanson, J.L. Miller, P.R. Norton (SPIE, 2017). https://doi.org/10.1117/12.2262618

    Chapter  Google Scholar 

  30. A. Belkadi, A. Weerakkody, G. Moddel, Demonstration of resonant tunneling effects in metal–double–insulator–metal (MI2M) diodes. Nat. Commun. 12, 2925 (2021). https://doi.org/10.1038/s41467-021-23182-0

    Article  CAS  Google Scholar 

  31. R.M. Barrer, Diffusion In and Through Solids (University Press, Cambridge, 1951)

    Google Scholar 

  32. C.J. Smithells (ed.), Metals Reference Book, 5th edn. (Butterworths, London, 1976)

    Google Scholar 

  33. Y. Cui, J. Zhao, Y. Zhao, J. Shao, Diffusion of metal ions from a substrate into oxide coatings. Opt. Mater. Express 6, 3119 (2016). https://doi.org/10.1364/OME.6.003119

    Article  CAS  Google Scholar 

  34. A.H. Heuer, Oxygen and aluminum diffusion in α-Al2O3: how much do we really understand? J. Eur. Ceram. Soc. 28, 1495–1507 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.020

    Article  CAS  Google Scholar 

  35. D.A. Stewart, Diffusion of oxygen in amorphous tantalum oxide. Phys. Rev. Mater. (2019). https://doi.org/10.1103/PhysRevMaterials.3.055605

    Article  Google Scholar 

  36. W. Li, Y. Ando, S. Watanabe, Cu diffusion in amorphous Ta2O5 studied with a simplified neural network potential. J. Phys. Soc. Jpn. 86, 104004 (2017). https://doi.org/10.7566/JPSJ.86.104004

    Article  Google Scholar 

  37. S. Grover, G. Moddel, Optical frequency rectification, in Rectenna Solar Cells. ed. by G. Moddel, S. Grover (Springer, New York, NY, 2013), pp.25–46. https://doi.org/10.1007/978-1-4614-3716-1_2

    Chapter  Google Scholar 

  38. S.V. Bulyarskiy, The effect of electron-phonon interaction on the formation of reverse currents of p–n-junctions of silicon-based power semiconductor devices. Solid-State Electron. 160, 107624 (2019). https://doi.org/10.1016/j.sse.2019.107624

    Article  CAS  Google Scholar 

  39. J.G. Simmons, Poole–Frenkel effect and Schottky effect in metal–insulator–metal systems. Phys. Rev. 155, 657–660 (1967). https://doi.org/10.1103/PhysRev.155.657

    Article  CAS  Google Scholar 

  40. T.-H. Chiang, J.F. Wager, Electronic conduction mechanisms in insulators. IEEE Trans. Electron Devices 65, 223–230 (2018). https://doi.org/10.1109/TED.2017.2776612

    Article  CAS  Google Scholar 

  41. M.A. Lampert, Simplified theory of space-charge-limited currents in an insulator with traps. Phys. Rev. 103, 1648–1656 (1956). https://doi.org/10.1103/PhysRev.103.1648

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project No. 0004-2022-0004. The investigations were performed in the Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences (INME RAS) using Large Scale Research Facility Complex for Heterogeneous Integration Technologies and Silicon+Carbon Nanotechnologies.

Funding

This work was funded by Ministry of Science and Higher Education of the Russian Federation, 0004-2022-0004.

Author information

Authors and Affiliations

Authors

Contributions

SVB contributed toward conceptualization, methodology, supervision, and writing—reviewing and editing. AVL contributed toward software, formal analysis, and writing—original draft. APO contributed toward investigation and formal analysis. KIL contributed toward investigation.

Corresponding author

Correspondence to Sergey V. Bulyarskiy.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyarskiy, S.V., Lakalin, A.V., Orlov, A.P. et al. Isolation of current–voltage characteristics for each layer of a two-layer dielectric using the example of Al–Al2O3–Ta2O5–Ni diodes with different tantalum oxide thicknesses. J Mater Sci: Mater Electron 34, 2173 (2023). https://doi.org/10.1007/s10854-023-11592-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11592-3

Navigation