Skip to main content
Log in

Characteristics of the Schottky barriers of two-terminal thin-film Al/nano-Si film/ITO structures

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The temperature dependence of the Schottky-barrier height and series resistance of two-terminal thin-film Al/nano-Si film/ITO structures are determined from the current—voltage (I–V) characteristics in the temperature range of 20–150°C. It is found that the form of the I–V characteristic at all investigated temperatures can be described by a model of two Schottky diodes connected back-to-back. For these diodes, the general formula is obtained, which allows the construction of functions approximating experimental curves with high accuracy. Based on this formula, a computational model is built, which generalizes the theoretical data obtained by S.K. Cheung and N.W. Cheung widely used for analyzing the I–V characteristics of single Schottky diodes. A technique is developed for calculating the Schottky-barrier heights in a system of two Schottky diodes connected back-to-back, their ideality factors, and the series resistance of the system. It is established that the barrier heights in the investigated temperature range are ~1 eV. According to the temperature dependence of the barrier height, such large values result from the presence of a SiO x (0 ≤ x ≤ 2) oxide layer at the nanoparticle boundaries. Charge carriers can overcome this layer by means of thermal excitation or tunneling. It is established that the intrinsic Schottky-barrier height of the Al/nc-Si film and nc-Si film/ITO junctions is ~0.1 eV. The activation dependences of the series resistance of the Al/nc-Si film/ITO structures and impedance spectra show that combined electric-charge transport related to ionic and electronic conductivity takes place in the structures under study. It is shown that the contribution of the electronic conductivity to the total transport process increases as the sample temperature is raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. T. Tang, Appl. Phys. Rev. 1, 011304 (2014).

    Article  ADS  Google Scholar 

  2. J. Yao, Zh. Sun, L. Zhong, D. Natelson, and J. M. Tour, Nano Lett. 10, 4105 (2010).

    Article  ADS  Google Scholar 

  3. Y. Ye, B. Yu, Zh. Gao, H. Meng, H. Zhang, L. Dai, and G. Qin, Nanotechnology 23, 194004 (2012).

    Article  ADS  Google Scholar 

  4. E. Dubois and G. Larrieu, J. Appl. Phys. 96, 729 (2004).

    Article  ADS  Google Scholar 

  5. Sh.-Y. Chiu, H.-W. Huang, T.-H. Huang, K.-Ch. Liang, K.-P. Liu, J.-H. Tsai, and W.-Sh. Lour, Sens. Actuators B 138, 422 (2009).

    Article  Google Scholar 

  6. J.-in Hahm and Ch. M. Lieber, Nano Lett. 4, 51 (2004).

    Article  ADS  Google Scholar 

  7. B. Yu, Y. Ye, P. Wu, Y. Dai, H. Zhang, and L. Dai, Appl. Phys. Lett. 100, 143509 (2012).

    Article  ADS  Google Scholar 

  8. K. Tomioka, M. Yoshimura, and T. Fukui, Nature 488, 189 (2012).

    Article  ADS  Google Scholar 

  9. S. Sinha, S. K. Chatterjee, J. Ghosh, and A. K. Meikap, J. Appl. Phys. 113, 123704 (2013).

    Article  ADS  Google Scholar 

  10. J. Huh, J. Na, J. S. Ha, S. Kim, and G. T. Kim, ACS Appl. Mater. Interfaces 3, 3097 (2011).

    Article  Google Scholar 

  11. X.-L. Tang, H.-W. Zhang, H. Su, and Z.-Y. Zhong, Physica E 31, 103 (2006).

    Article  ADS  Google Scholar 

  12. T. Nagano, M. Tsutsui, R. Nouchi, N. Kawasaki, Y. Ohta, Y. Kubozono, N. Takahashi, and A. Fujiwara, J. Phys. Chem. C 111, 7211 (2007).

    Article  Google Scholar 

  13. R. Nouchi, J. Appl. Phys. 116, 184505 (2014).

    Article  Google Scholar 

  14. L. S. Araujo, E. P. Bernardo, and E. R. Leite, J. Phys.: Condens. Matter 24, 225303 (2012).

    ADS  Google Scholar 

  15. S. K. Cheung and N. W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  ADS  Google Scholar 

  16. G. P. Kuz’min, M. E. Karasev, E. M. Khokhlov, N. N. Kononov, S. B. Korovin, V. G. Plotnichenko, S. N. Polyakov, V. I. Pustovoy, and O. V. Tikhonevitch, Laser Phys. 10, 939 (2000).

    Google Scholar 

  17. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, Hoboken, NJ, 2007), p. 137.

    Google Scholar 

  18. H. C. Card and E. H. Rhoderick, J. Phys. D: Appl. Phys. 4, 1589 (1971).

  19. S. G. Dorofeev, N. N. Kononov, A. A. Ishchenko, R. B. Vasil’ev, M. A. Goldschtrakh, K. V. Zaitseva, V. V. Koltashev, V. G. Plotnichenko, and O. V. Tikhonevich, Semiconductors 43, 1420 (2009).

    Article  ADS  Google Scholar 

  20. A. Lasia, Electrochemical Impedance Spectroscopy and its Applications (Springer Science + Business Media, New York, 2014). doi 10.1007/978-1-4614-8933-7_1

    Book  Google Scholar 

  21. J. Ross Macdonald, Solid State Ionics 13, 147 (1984).

    Article  Google Scholar 

  22. J. C. Dyre and Th. B. Schroder, Rev. Mod. Phys. 72, 873 (2000).

    Article  ADS  Google Scholar 

  23. X. Ren and P. G. Pickup, J. Electroanal. Chem. 420, 251 (1997).

    Article  Google Scholar 

  24. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff, and E. C. Pereira, J. Phys. Chem. B 104, 2287 (2000).

    Article  Google Scholar 

  25. N. N. Kononov, S. G. Dorofeev, R. A. Mironov, V. G. Plotnichenko, E. M. Dianov, and A. A. Ishchenko, Semiconductors 45, 1038 (2011).

    Article  ADS  Google Scholar 

  26. N. N. Kononov and S. G. Dorofeev, in Smart Nanoparticles Technology, Ed. by Abbass A. Hashim (InTech, Rijeka, Croatia, 2012), Chap. 19, p. 407. ISBN 978- 953-51-0500-8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kononov.

Additional information

Original Russian Text © N.N. Kononov, S.G. Dorofeev, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 5, pp. 637–646.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononov, N.N., Dorofeev, S.G. Characteristics of the Schottky barriers of two-terminal thin-film Al/nano-Si film/ITO structures. Semiconductors 51, 608–616 (2017). https://doi.org/10.1134/S106378261705013X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261705013X

Navigation