Skip to main content
Log in

Zn-MOF-derived γ-Zn(OH)2/Zn(OH)2.0.5H2O/Zn(OH)2/activated charcoal-based electrode material for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we derived a γ-Zn(OH)2/Zn(OH)2.0.5H2O/Zn(OH)2@AC nanocomposite-based electrode material from ZIF-8 metal-organic framework (MOF) /activated charcoal with a weight ratio of 1:0.5 by a simple thermolysis process at 400 °C for 4 h. The structural, morphological, and electrochemical properties of the prepared electrode materials were studied using powder XRD, FE-SEM, TEM, XPS, and electrochemical workstations. The electrochemical properties were studied in three-electrode cells with 3M of KOH electrolyte. The specific capacitance of γ-Zn(OH)2/Zn(OH)2.0.5H2O/Zn(OH)2@AC was 560 F/g @1 A/g current density, and it was higher than that of ZIF-8 metal-organic framework (MOF) /activated charcoal (330 F/g @ 1 A/g). The enhanced specific capacitance of γ-Zn(OH)2/Zn(OH)2.0.5H2O/Zn(OH)2@AC is due to the improved electrical conductivity o along with higher active surface area which increased the contact of electrolyte ions with active sites along with electron transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data presented in this article are available at request from the corresponding author.

References

  1. D. Wei, G. Amaratunga, Int. J. Electrochem. Sci. 2, 897 (2007)

    Article  Google Scholar 

  2. J. Desilvestro, O. Haas, J. Electrochem. Soc. 137, 5C (1990)

    Article  CAS  Google Scholar 

  3. H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim, K. Kang, Chem. Rev. 114, 11788 (2014)

    Article  CAS  Google Scholar 

  4. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111, 3577 (2011)

    Article  CAS  Google Scholar 

  5. B. Dunn, H. Kamath, J.M. Tarascon, Science 334, 928 (2011)

    Article  CAS  Google Scholar 

  6. S. Li, J. Chen, J. Xiong, X. Gong, J. Ciou, P.S. Lee, Nanomicro. Lett. 12, 1 (2020)

    Google Scholar 

  7. Y. Wang, Y. Xia, Adv. Mater. 25, 5336 (2013)

    Article  CAS  Google Scholar 

  8. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Adv. Mater. 23, 4828 (2011)

    Article  CAS  Google Scholar 

  9. B. Li, M. Zheng, H. Xue, H. Pang, Inorg. Chem. Front. 3, 175 (2016)

    Article  CAS  Google Scholar 

  10. A. Chen, K. Xia, L. Zhang, Y. Yu, Y. Li, H. Sun, Y. Wang, Y. Li, S. Li, Langmuir 32, 8934 (2016)

    Article  CAS  Google Scholar 

  11. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    Article  CAS  Google Scholar 

  12. Q. Liao, N. Li, S. Jin, G. Yang, C. Wang, ACS Nano 9, 5310 (2015)

    Article  CAS  Google Scholar 

  13. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016)

    Article  Google Scholar 

  14. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Energy Environ. Sci. 8, 702 (2015)

    Article  CAS  Google Scholar 

  15. W. Deng, X. Ji, Q. Chen, C.E. Banks, RSC Adv. 1, 1171 (2011)

    Article  CAS  Google Scholar 

  16. G.N. Zhu, Y.G. Wang, Y.Y. Xia, Energy Environ. Sci. 5, 6652 (2012)

    Article  CAS  Google Scholar 

  17. W. Xia, A. Mahmood, R. Zou, Q. Xu, Energy Environ. Sci. 8, 1837 (2015)

    Article  CAS  Google Scholar 

  18. X. Zhang, S. Zhang, Y. Tang, X. Huang, H. Pang, Compos. B Eng. 230, 109532 (2022)

    Article  CAS  Google Scholar 

  19. Z. Pan, Y. Jiang, P. Yang, Z. Wu, W. Tian, L. Liu, Y. Song, Q. Gu, D. Sun, L. Hu, ACS Nano 12, 2968 (2018)

    Article  CAS  Google Scholar 

  20. T.T. Nguyen, J. Balamurugan, N.H. Kim, J.H. Lee, J. Mater. Chem. A Mater. 6, 8669 (2018)

    Article  CAS  Google Scholar 

  21. Z.H. Huang, F.F. Sun, M. Batmunkh, W.H. Li, H. Li, Y. Sun, Q. Zhao, X. Liu, T.Y. Ma, J. Mater. Chem. A Mater. 7, 11826 (2019)

    Article  CAS  Google Scholar 

  22. Q. Zhang, W. Xu, J. Sun, Z. Pan, J. Zhao, X. Wang, J. Zhang, P. Man, J. Guo, Z. Zhou, B. He, Z. Zhang, Q. Li, Y. Zhang, L. Xu, Y. Yao, Nano Lett. 17, 7552 (2017)

    Article  CAS  Google Scholar 

  23. T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Energy Storage Mater. 16, 545 (2019)

    Article  Google Scholar 

  24. H. Zhang, B. Xu, H. Mei, Y. Mei, S. Zhang, Z. Yang, Z. Xiao, W. Kang, D. Sun, Small 15, 1904663 (2019)

    Article  CAS  Google Scholar 

  25. N. Duraisamy, A. Numan, S.O. Fatin, K. Ramesh, S. Ramesh, J. Colloid Interface Sci. 471, 136 (2016)

    Article  CAS  Google Scholar 

  26. G. Qian, Q. Peng, D. Zou, S. Wang, B. Yan, Front Mater. 7, 560719 (2020)

    Google Scholar 

  27. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Adv. Mater. 24, 5166 (2012)

    Article  CAS  Google Scholar 

  28. T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, J. Power Sources 359, 371 (2017)

    Article  CAS  Google Scholar 

  29. S. Horike, S. Shimomura, S. Kitagawa, Nature Chem. 9(1), 695 (2009)

    Article  Google Scholar 

  30. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Science 300, 1127 (2003)

    Article  CAS  Google Scholar 

  31. L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Adv. Mater. 30, 1703663 (2018)

    Article  Google Scholar 

  32. O. Shekhah, J. Liu, R.A. Fischer, C. Wöll, Chem. Soc. Rev. 40, 1081 (2011)

    Article  CAS  Google Scholar 

  33. M. Woellner, S. Hausdorf, N. Klein, P. Mueller, M.W. Smith, S. Kaskel, Adv. Mater. 30, 1704679 (2018)

    Article  Google Scholar 

  34. V. Stavila, A.A. Talin, M.D. Allendorf, Chem. Soc. Rev. 43, 5994 (2014)

    Article  CAS  Google Scholar 

  35. N.C. Burtch, J. Heinen, T.D. Bennett, D. Dubbeldam, M.D. Allendorf, Adv. Mater. 30, 1704124 (2018)

    Article  Google Scholar 

  36. X. Xiao, L. Zou, H. Pang, Q. Xu, Chem. Soc. Rev. 49, 301 (2020)

    Article  CAS  Google Scholar 

  37. R.R. Salunkhe, Y.V. Kaneti, Y. Yamauchi, ACS Nano 11, 5293 (2017)

    Article  CAS  Google Scholar 

  38. A. Gowdhaman, S.A. Kumar, D. Elumalai, C. Balaji, M. Sabarinathan, R. Ramesh, M. Navaneethan, J. Energy Storage 61, 106769 (2023)

    Article  Google Scholar 

  39. A. Paul, G. Vyas, P. Paul, D.N. Srivastava, ACS Appl. Nano Mater. 1, 3600 (2018)

    Article  CAS  Google Scholar 

  40. M. Li, A. Farooq, S. Jiang, M. Zhang, H. Mussana, L. Liu, Text. Res. J. 91(19–20), 2303 (2021). https://doi.org/10.1177/00405175211001807

    Article  CAS  Google Scholar 

  41. J. Xu, L. Wu, Y. Liu, J. Zhang, J. Liu, S. Shu, X. Kang, Q. Song, D. Liu, F. Huang, Y. Hu, Surf. Interfaces 18, 100420 (2020)

    Article  CAS  Google Scholar 

  42. R. Gupta, J.M. Modak, G. Madras, Nanoscale Adv. 1, 3992 (2019)

    Article  CAS  Google Scholar 

  43. S. Abujarada, A.S. Walton, A.G. Thomas, U.K. Chohan, S.P.K. Koehler, Phys. Chem. Chem. Phys. 21, 10939 (2019)

    Article  CAS  Google Scholar 

  44. C. Sasirekha, S. Arumugam, AIP Conf. Proc. 1832, 050047 (2017)

    Article  Google Scholar 

  45. A. Viswanathan, A.N. Shetty, S.P. Bharath, K. Mahendra, Bull. Mater. Sci. 44, 1 (2021)

    Article  Google Scholar 

  46. L. Li, J. Zhou, X. Pei, Y. Zhang, Ionics (Kiel) 29, 3303 (2023)

    Article  CAS  Google Scholar 

  47. J. Jiang, X.X. Liu, J. Han, K. Hu, J.S. Chen, Processes 9, 680 (2021)

    Article  CAS  Google Scholar 

  48. J. Zheng, R. Zhang, X. Wang, P. Yu, Res. Chem. Intermed. 44, 6637 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support through Researchers Supporting Project Number (RSP2023R354), King Saud University, Riyadh 11451, Saudi Arabia.

Funding

This work was funded by King Saud University (RSP2023R354).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the study's conception and design. Material preparation, data collection, and analysis were performed by NE, AG, SM, SH, MN, RJR, HA-l, MS, RR, and PR. The first draft of the manuscript was written by PR, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. Ramu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or no financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

N. Elumalai, Gowdhaman, A., Masilamani, S. et al. Zn-MOF-derived γ-Zn(OH)2/Zn(OH)2.0.5H2O/Zn(OH)2/activated charcoal-based electrode material for supercapacitor applications. J Mater Sci: Mater Electron 34, 2164 (2023). https://doi.org/10.1007/s10854-023-11591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11591-4

Navigation