Skip to main content
Log in

Strategic wet-chemical combination of activated charcoal with copper zirconate for enhanced electrocatalytic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The preparation of a novel Activated Charcoal (AC) and Copper Zirconate nanocomposite and the investigation of its properties has been reported in this study. Sol–Gel method was carried out for the fabrication of copper zirconate nano-powder, while a simple wet chemical process was used for the synthesis of AC/CuZrO3 nanocomposite. The resultant nanocomposite was then characterized using various techniques such as SEM EDS, XRD, and UV–Vis to analyze the effects that the addition of CuZrO3 has on the electro and photoactivity of AC. UV-Vis spectroscopy revealed a meaningful modification of optical properties of AC, resulting an improved electrochemical behavior of AC/CuZrO3 nanocomposite as evidenced by EIS. The electrochemical results further showed considerable increase in the efficiency of electrons transport of AC/CuZrO3 NC and the redox potential of the nanocomposite was also increased. The maximum oxidation potential was achieved near a current density of 570 mA/cm2, as compared to that of AC (10 mA/cm2) which reflected the suitability of AC/CuZrO3 for multiple advanced applications including but not limited to electro and photoelectrochemical cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data will be available on reasonable request.

References

  1. J. Ouyang, L. Zhou, Z. Liu, J.Y.Y. Heng, W. Chen, Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: a review. Sep. Purif. Technol. 253, 117536 (2020). https://doi.org/10.1016/j.seppur.2020.117536

    Article  CAS  Google Scholar 

  2. K. Klasson, C. Ledbetter, M. Uchimiya, I. Lima, Activated biochar removes 100 % dibromochloropropane from field well water. Environ. Chem. Lett. 11, 271–275 (2013). https://doi.org/10.1007/s10311-012-0398-7

    Article  CAS  Google Scholar 

  3. D. Shan et al., Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J. Hazard. Mater. 305, 156–163 (2016). https://doi.org/10.1016/j.jhazmat.2015.11.047

    Article  CAS  Google Scholar 

  4. M. Kołtowski, I. Hilber, T.D. Bucheli, B. Charmas, J. Skubiszewska-Zięba, P. Oleszczuk, Activated biochars reduce the exposure of polycyclic aromatic hydrocarbons in industrially contaminated soils. Chem. Eng. J. 310, 33–40 (2017). https://doi.org/10.1016/j.cej.2016.10.065

    Article  CAS  Google Scholar 

  5. A. Basta, V. Lotfy, N. Fathy, Effective treatment for environmental enhancing the performance of undesirable agro-waste in production of carbon nanostructures as adsorbent. J. Appl. Polym. Sci. 138, e50350 (2020). https://doi.org/10.1002/app.50350

    Article  CAS  Google Scholar 

  6. S.-H. Moon, J.-W. Shim, A novel process for CO2/CH4 gas separation on activated carbon fibers-electric swing adsorption. J. Colloid Interface Sci. 298(2), 523–528 (2006). https://doi.org/10.1016/j.jcis.2005.12.052

    Article  CAS  Google Scholar 

  7. A.M. Fuente, G. Pulgar, F. González, C. Pesquera, C. Blanco, Activated carbon supported Pt catalysts: effect of support texture and metal precursor on activity of acetone hydrogenation. Appl. Catal. Gen. 208(1), 35–46 (2001). https://doi.org/10.1016/S0926-860X(00)00699-2

    Article  CAS  Google Scholar 

  8. S.-H. Liu, Y.-H. Tang, Hierarchically porous biocarbons prepared by microwave-aided carbonization and activation for capacitive deionization. J. Electroanal. Chem. 878, 114587 (2020). https://doi.org/10.1016/j.jelechem.2020.114587

    Article  CAS  Google Scholar 

  9. S.A. Patil et al., Adsorption of toxic Pb(II) on activated carbon derived from agriculture waste (Mahogany fruit shell): isotherm, kinetic and thermodynamic study. Int. J. Environ. Anal. Chem. 102(19), 8270–8286 (2022). https://doi.org/10.1080/03067319.2020.1849648

    Article  CAS  Google Scholar 

  10. Z. Zhu, Z. Xu, The rational design of biomass-derived carbon materials towards next-generation energy storage: a review. Renew. Sustain. Energy Rev. 134, 110308 (2020). https://doi.org/10.1016/j.rser.2020.110308

    Article  CAS  Google Scholar 

  11. R. Zhu et al., Analysis of factors influencing pore structure development of agricultural and forestry waste-derived activated carbon for adsorption application in gas and liquid phases: a review. J. Environ. Chem. Eng. 9(5), 105905 (2021). https://doi.org/10.1016/j.jece.2021.105905

    Article  CAS  Google Scholar 

  12. A. Yuan, Q. Zhang, A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte. Electrochem. Commun. 8(7), 1173–1178 (2006). https://doi.org/10.1016/j.elecom.2006.05.018

    Article  CAS  Google Scholar 

  13. H. Oda, Y. Nakagawa, Removal of ionic substances from dilute solution using activated carbon electrodes. Carbon 41(5), 1037–1047 (2003). https://doi.org/10.1016/S0008-6223(03)00013-7

    Article  CAS  Google Scholar 

  14. S. Biloé, V. Goetz, A. Guillot, Optimal design of an activated carbon for an adsorbed natural gas storage system. Carbon 40(8), 1295–1308 (2002). https://doi.org/10.1016/S0008-6223(01)00287-1

    Article  Google Scholar 

  15. M. Israr et al., Rapid conjunction of 1D carbon nanotubes and 2D graphitic carbon nitride with ZnO for improved optoelectronic properties. Appl. Nanosci. 10(10), 3805–3817 (2020). https://doi.org/10.1007/s13204-020-01474-z

    Article  CAS  Google Scholar 

  16. F.F. de Brites-Nóbrega, A.N.B. Polo, A.M. Benedetti, M.M.D. Leão, V. Slusarski-Santana, N.R.C. Fernandes-Machado, Evaluation of photocatalytic activities of supported catalysts on NaX zeolite or activated charcoal. J. Hazard. Mater. 263, 61–66 (2013). https://doi.org/10.1016/j.jhazmat.2013.07.061

    Article  CAS  Google Scholar 

  17. R. Khan et al., 2D nanosheets and composites for EMI shielding analysis. Sci. Rep. 10(1), 21550 (2020). https://doi.org/10.1038/s41598-020-78614-6

    Article  CAS  Google Scholar 

  18. N. Areerachakul, S. Vigneswaran, H.H. Ngo, J. Kandasamy, Granular activated carbon (GAC) adsorption-photocatalysis hybrid system in the removal of herbicide from water. Sep. Purif. Technol. 55(2), 206–211 (2007). https://doi.org/10.1016/j.seppur.2006.12.007

    Article  CAS  Google Scholar 

  19. V.L. Chandraboss, J. Kamalakkannan, S. Senthilvelan, Synthesis of activated charcoal supported Bi-doped TiO2 nanocomposite under solar light irradiation for enhanced photocatalytic activity. Appl. Surf. Sci. 387, 944–956 (2016). https://doi.org/10.1016/j.apsusc.2016.06.110

    Article  CAS  Google Scholar 

  20. N. Sobana, M. Swaminathan, Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53. Sol. Energy Mater. Sol. Cells 91(8), 727–734 (2007). https://doi.org/10.1016/j.solmat.2006.12.013

    Article  CAS  Google Scholar 

  21. S. Zahid, Z. Tariq, A. Azhar, S.U. Khan, U. Ali, M.A. Basit, Electroanalytical investigation of quantum-dot based deposition of metal chalcogenides on g-C3N4 for improved photochemical performance. Colloids Surf. Physicochem. Eng. Asp. 645, 128905 (2022). https://doi.org/10.1016/j.colsurfa.2022.128905

    Article  CAS  Google Scholar 

  22. M. Cakici, R.R. Kakarla, F. Alonso-Marroquin, Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem. Eng. J. 309, 151–158 (2017). https://doi.org/10.1016/j.cej.2016.10.012

    Article  CAS  Google Scholar 

  23. X. Fang, J. Liu, J. Wang, H. Zhao, H. Ren, Z. Li, Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ZnO composites for ultrasensitive electrochemical detection of tumor biomarker. Biosens. Bioelectron. 97, 218–225 (2017). https://doi.org/10.1016/j.bios.2017.05.055

    Article  CAS  Google Scholar 

  24. B. Ni, X. Wang, Face the edges: catalytic active sites of nanomaterials. Adv. Sci. 2(7), 1500085 (2015). https://doi.org/10.1002/advs.201500085

    Article  CAS  Google Scholar 

  25. W. Xu, S. Dai, G. Liu, Y. Xi, C. Hu, X. Wang, CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors. Electrochim. Acta 203, 1–8 (2016). https://doi.org/10.1016/j.electacta.2016.03.170

    Article  CAS  Google Scholar 

  26. L.-C. Jiang, W.-D. Zhang, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 25(6), 1402–1407 (2010). https://doi.org/10.1016/j.bios.2009.10.038

    Article  CAS  Google Scholar 

  27. R. Jain, D.C. Tiwari, P. Pandey, Electrocatalytic quantifaction of antitubarcular drug ethionamide in sodium lauryl sulfate. J. Mol. Liq. 198, 364–368 (2014). https://doi.org/10.1016/j.molliq.2014.07.025

    Article  CAS  Google Scholar 

  28. Q. Li et al., Nanosize effects assisted synthesis of the high pressure metastable phase in ZrO2. Nanoscale 8(4), 2412–2417 (2016). https://doi.org/10.1039/C5NR07503C

    Article  CAS  Google Scholar 

  29. J.G.S. Moo, C.C. Mayorga-Martinez, H. Wang, B. Khezri, W.Z. Teo, M. Pumera, Nano/microrobots meet electrochemistry. Adv. Funct. Mater. 27(12), 1604759 (2017). https://doi.org/10.1002/adfm.201604759

    Article  CAS  Google Scholar 

  30. R. Gopal, A. Sambandam, T. Kuppulingam, S. Meenakshisundaram, M.S. AlSalhi, S. Devanesan, Versatile fabrication and characterization of Cu-doped ZrO2 nanoparticles: enhanced photocatalytic and photoluminescence properties. J. Mater. Sci. 31(9), 7232–7246 (2020). https://doi.org/10.1007/s10854-020-03296-9

    Article  CAS  Google Scholar 

  31. T. Kassa Dada, A. Vuppaladadiyam, A. Xiaofei Duan, R. Kumar, E. Antunes, Probing the effect of Cu-SrO loading on catalyst supports (ZSM-5, Y-zeolite, activated carbon, Al2O3, and ZrO2) for aromatics production during catalytic co-pyrolysis of biomass and waste cooking oil. Bioresour. Technol. 360, 127515 (2022). https://doi.org/10.1016/j.biortech.2022.127515

    Article  CAS  Google Scholar 

  32. Y. Lu, X. Liang, J. Xu, Z. Zhao, G. Tian, Synthesis of CuZrO3 nanocomposites/graphene and their application in modified electrodes for the co-detection of trace Pb(II) and Cd(II). Sens. Actuators B 273, 1146–1155 (2018). https://doi.org/10.1016/j.snb.2018.06.104

    Article  CAS  Google Scholar 

  33. S.L. Ezung, M. Baruah, S. Kumar, S. Sharma, D. Sinha, Photocatalytic degradation of the organophosphorus insecticide chlorpyrifos in aqueous suspensions using a novel activated carbon ZrO2-ZnO nanocomposite under UV light. Korean J. Chem. Eng. 40(6), 1360–1372 (2023). https://doi.org/10.1007/s11814-022-1354-2

    Article  CAS  Google Scholar 

  34. N. Mahendran, S.J. Jeyakumar, M. Ponnar, Structural, optical and electrical properties of copper composite ZrO2 nanoparticles prepared via sol–gel method. J. Mater. Sci. 32(18), 23399–23411 (2021). https://doi.org/10.1007/s10854-021-06828-z

    Article  CAS  Google Scholar 

  35. I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem. Eng. J. 137(3), 462–470 (2008). https://doi.org/10.1016/j.cej.2007.04.031

    Article  CAS  Google Scholar 

  36. W. Zhou, E.I. Ross-Medgaarden, W.V. Knowles, M.S. Wong, I.E. Wachs, C.J. Kiely, Identification of active Zr–WOx clusters on a ZrO2 support for solid acid catalysts. Nat. Chem. 1(9), 722–728 (2009). https://doi.org/10.1038/nchem.433

    Article  CAS  Google Scholar 

  37. S. Rodrigues, M. Silva, J. Torres, M. Bianchi, Use of magnetic activated carbon in a solid phase extraction procedure for analysis of 2,4-dichlorophenol in water samples. Water Air Soil Pollut. 231, 294 (2020). https://doi.org/10.1007/s11270-020-04610-1

    Article  CAS  Google Scholar 

  38. S. Saha, S.B. Abd Hamid, CuZrO3 nanoparticles catalyst in aerobic oxidation of vanillyl alcohol. RSC Adv. 7(16), 9914–9925 (2017). https://doi.org/10.1039/C6RA26370D

    Article  CAS  Google Scholar 

  39. H. Heryanto, D. Tahir, The correlations between structural and optical properties of magnetite nanoparticles synthesised from natural iron sand. Ceram. Int. 47(12), 16820–16827 (2021). https://doi.org/10.1016/j.ceramint.2021.02.255

    Article  CAS  Google Scholar 

  40. H. Heryanto, D. Tahir, Composite fayalite with 5% laterite soil and iron sand: structural properties and band gap calculation based on theoretical Kubelka-Munk, taylor expansion, and self-consistent field method. JOM (2023). https://doi.org/10.1007/s11837-023-05828-0

    Article  Google Scholar 

  41. S. Nam, A.D. French, B.D. Condon, M. Concha, Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 135, 1–9 (2016). https://doi.org/10.1016/j.carbpol.2015.08.035

    Article  CAS  Google Scholar 

  42. U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation.’ Nat. Nanotechnol. 6(9), 534 (2011). https://doi.org/10.1038/nnano.2011.145

    Article  CAS  Google Scholar 

  43. S. Hu, Y.-L. Hsieh, Lignin derived activated carbon particulates as an electric supercapacitor: carbonization and activation on porous structures and microstructures. RSC Adv. 7(48), 30459–30468 (2017). https://doi.org/10.1039/C7RA00103G

    Article  CAS  Google Scholar 

  44. S. Kay, N. Chidhambaram, Temperature-mediated phase evolution of perovskite-type CuZrO3 nanoparticles. Phase Transit. 96(6), 424–433 (2023). https://doi.org/10.1080/01411594.2023.2200946

    Article  CAS  Google Scholar 

  45. S. Shenoy, K. Sridharan, Bismuth oxybromide nanoplates embedded on activated charcoal as effective visible light driven photocatalyst. Chem. Phys. Lett. 749, 137435 (2020). https://doi.org/10.1016/j.cplett.2020.137435

    Article  CAS  Google Scholar 

  46. N. Amir, D. Tahir, H. Heryanto, Synthesis, structural and optical characteristics of Fe3O4/activated carbon photocatalysts to adsorb pesticide waste. J. Mater. Sci. 34(5), 445 (2023). https://doi.org/10.1007/s10854-023-09910-w

    Article  CAS  Google Scholar 

  47. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9(23), 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  Google Scholar 

  48. H. Zhong et al., Idealizing Tauc plot for accurate bandgap determination of semiconductor with ultraviolet-visible spectroscopy: a case study for cubic boron arsenide. J. Phys. Chem. Lett. 14(29), 6702–6708 (2023). https://doi.org/10.1021/acs.jpclett.3c01416

    Article  CAS  Google Scholar 

  49. R. Vinodh et al., Fabrication of high-performance asymmetric supercapacitor consists of nickel oxide and activated carbon (NiO//AC). Catalysts 12(4), 375 (2022). https://doi.org/10.3390/catal12040375

    Article  CAS  Google Scholar 

  50. D. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors. J. Power. Sources 74(1), 99–107 (1998). https://doi.org/10.1016/S0378-7753(98)00038-X

    Article  CAS  Google Scholar 

  51. G. Bharath, K. Rambabu, F. Banat, A. Hai, A.F. Arangadi, N. Ponpandian, Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe3O4 nanocomposites for capacitive deionization of Cr(VI) ions. Sci. Total. Environ. 691, 713–726 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.069

    Article  CAS  Google Scholar 

  52. Q. Wang et al., High-performance supercapacitor based on V2O5/carbon nanotubes-super activated carbon ternary composite. Ceram. Int. 42(10), 12129–12135 (2016). https://doi.org/10.1016/j.ceramint.2016.04.145

    Article  CAS  Google Scholar 

  53. G. Jayakumar, A.A. Irudayaraj, A.D. Raj, Investigation on the synthesis and photocatalytic activity of activated carbon–cerium oxide (AC–CeO2) nanocomposite. Appl. Phys. A 125(11), 742 (2019). https://doi.org/10.1007/s00339-019-3044-4

    Article  CAS  Google Scholar 

  54. M.M. Emara, S.H. Ali, A.A. Hassan, T.S.E. Kassem, P.G. Van Patten, How does photocatalytic activity depend on adsorption, composition, and other key factors in mixed metal oxide nanocomposites? Colloid Interface Sci. Commun. 40, 100341 (2021). https://doi.org/10.1016/j.colcom.2020.100341

    Article  CAS  Google Scholar 

  55. Z. Bai et al., Two-dimensional NiO@C-N nanosheets composite as a superior low-temperature anode material for advanced lithium-/sodium-ion batteries. ChemElectroChem 7(17), 3616–3622 (2020). https://doi.org/10.1002/CELC.202000747

    Article  CAS  Google Scholar 

  56. M. Shoeb et al., VARTM-assisted high-performance solid-state structural supercapacitor device based on the synergistic effect of Ni(OH)2-Co3S4 nanocomposite for widened potential window and charge storage mechanism. Chem. Eng. J. 466, 143116 (2023). https://doi.org/10.1016/J.CEJ.2023.143116

    Article  CAS  Google Scholar 

  57. Y. Wang et al., High-loading Fe2O3/SWNT composite films for lithium-ion battery applications. Nanotechnology 28(34), 345703 (2017). https://doi.org/10.1088/1361-6528/AA7A81

    Article  Google Scholar 

  58. H. Iqbal et al., Fabrication of chromium sulfide nanoparticles and reduced graphene oxide based high power asymmetric supercapacitor. J. Mater. Sci. 33(32), 24845–24856 (2022). https://doi.org/10.1007/S10854-022-09195-5/FIGURES/4

    Article  CAS  Google Scholar 

  59. S. Majumdar, R. Ray, P. Sen, Anomalous intra diffusive behavior of chitosan/PVDF solid polymer electrolytes and the enhancement of effective specific capacitance with nanostructured spinel MnCoFeO4 electrode in solid-state supercapacitors. Electrochim. Acta 385, 138295 (2021). https://doi.org/10.1016/J.ELECTACTA.2021.138295

    Article  CAS  Google Scholar 

  60. A. Azhar et al., Synchronized wet-chemical development of 2-dimensional MoS2 and g-C3N4/MoS2 QDs nanocomposite as efficient photocatalysts for detoxification of aqueous dye solutions. Colloids Surf. Physicochem. Eng. Asp. 657, 130581 (2023). https://doi.org/10.1016/j.colsurfa.2022.130581

    Article  CAS  Google Scholar 

  61. S.S.P. Selvin et al., Photocatalytic degradation of rhodamine b using zinc oxide activated charcoal polyaniline nanocomposite and its survival assessment using aquatic animal model. ACS Publ. 6(1), 258–267 (2017). https://doi.org/10.1021/acssuschemeng.7b02335

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AB: Data Curation, Experimentation, Methodology, Writing—original draft. FR: Visualization and Investigation. AN: Investigation. SIAS: Investigation. MAB: Conceptualization, Writing—review & editing, Supervision, Resources.

Corresponding author

Correspondence to Muhammad Abdul Basit.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1908 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batool, A., Rashid, F., Nazir, A. et al. Strategic wet-chemical combination of activated charcoal with copper zirconate for enhanced electrocatalytic performance. J Mater Sci: Mater Electron 34, 2121 (2023). https://doi.org/10.1007/s10854-023-11423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11423-5

Navigation