Skip to main content
Log in

Synthesis of reduced graphene oxide coated with Au@Au2S nanocomposite and study of its photovoltaic properties for use in dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In dye-sensitized solar cells (DSSCs), the photoanode plays a crucial role in absorbing light and generating charge carriers. TiO2 is commonly used as the photoanode material, while it has limitations in terms of light absorption and charge transport efficiency, which can affect the overall performance of DSSCs. To overcome these limitations, one promising approach involves incorporating nanocomposites into the TiO2 photoanode to improve its light absorption and charge transport properties. In this study, a new reduced graphene oxide-gold-gold(I) sulfide (rGO-Au@Au2S) nanocomposite was synthesized for doping in the photoanode of DSSCs to improve the plasmonic properties and performance of the DSSCs devices. The rGO-Au@Au2S nanocomposite was characterized using SEM, HRTEM, EDS, XRD, FT-IR, UV–Vis, Raman spectroscopy, photoluminescence analysis, and BET techniques. Based on the results, during the formation of Au@Au2S nanostructures on the GO, these sheets were reduced to rGO. Also, with the growth of the sulfide shell on the surface of Au nanoparticles, the plasmonic absorption peak of gold nanoparticles shifted to the infrared region (780 nm). Also, by adding different weight ratios of rGO-Au@Au2S to TiO2 photoanodes, the performance of the DSSCs was improved so that in the weight ratio of 1.85 wt%, the efficiency of DSSCs increased by 37%. The improvement in solar cell efficiency is attributed to increased light absorption and reduced electron-hole recombination. This was achieved by utilizing the high specific surface area of GO and the plasmonic property of Au@Au2S, which enhanced light absorption in the infrared region and the overall solar cell efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. G. Resch, A. Held, T. Faber, C. Panzer, F. Toro, R. Haas, Energy Policy. 36, 4048 (2008)

    Article  Google Scholar 

  2. P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007)

    Article  CAS  Google Scholar 

  3. M. Tadayon Tajabadi, A. Sabernejad, M. Khalili Najafabadi, Res. Biotechnol. Environ. Sci. 2, 18 (2023)

    Article  Google Scholar 

  4. F. Ansari, E. Shirzadi, M. Salavati-Niasari, T. Lagrange, K. Nonomura, J.H. Yum, K. Sivula, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, P.J. Dyson, A. Hagfeldt, J. Am. Chem. Soc. 142, 11428 (2020)

    Article  CAS  Google Scholar 

  5. L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Adv. Phys. X. 4, 1548305 (2019)

    CAS  Google Scholar 

  6. A.C. Celline, A.Y. Subagja, S. Suryaningsih, A. Aprilia, L. Safriani, Mater. Sci. Forum. 1028, 151–156 (2021)

    Article  Google Scholar 

  7. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)

    Article  CAS  Google Scholar 

  8. D.J. Yun, H. Ra, J.M. Kim, S. Jeon, S.H. Park, M. Seol, S. Lee, Appl. Surf. Sci. 550, 149273 (2021)

    Article  CAS  Google Scholar 

  9. M. Soldera, K. Taretto, Phys. Status Solidi Appl. Mater. Sci. 215, 1700906 (2018)

    Article  Google Scholar 

  10. S. Khorrami, F. Kamali, A. Zarrabi, Biocatal. Agric. Biotechnol. 25, 101620 (2020)

    Article  Google Scholar 

  11. S. Khorrami, Z. Abdollahi, G. Eshaghi, A. Khosravi, E. Bidram, A. Zarrabi, Sci. Rep. 9, 9167 (2019)

    Article  Google Scholar 

  12. T.K. Sau, C.J. Murphy, J. Am. Chem. Soc. 126, 8648 (2004)

    Article  CAS  Google Scholar 

  13. Y. Chen, H. Wu, Z. Li, P. Wang, L. Yang, Y. Fang, Plasmonics. 7, 509 (2012)

    Article  CAS  Google Scholar 

  14. M.A. Al-Azawi, N. Bidin, A.K. Ali, M. Bououdina, J. Mater. Sci. Mater. Electron. 26, 6276 (2015)

    Article  CAS  Google Scholar 

  15. F. Parveen, B. Sannakki, C.V. Jagtap, J. Mater. Sci. Mater. Electron. 28, 5082 (2017)

    Article  CAS  Google Scholar 

  16. S. Bhardwaj, A. Pal, K. Chatterjee, T.H. Rana, G. Bhattacharya, S. Sinha Roy, P. Chowdhury, G.D. Sharma, S. Biswas, J. Mater. Sci. Mater. Electron. 29, 18209 (2018)

    Article  CAS  Google Scholar 

  17. T. Solaiyammal, S. Muniyappan, B.G.T. Keerthana, S.S. Nemala, P. Bhargava, P. Murugakoothan, J. Mater. Sci. Mater. Electron. 28, 15423 (2017)

    Article  CAS  Google Scholar 

  18. N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella, C. Barolo, Green. Chem. 22, 7168 (2020)

    Article  CAS  Google Scholar 

  19. M. Kokkonen, P. Talebi, J. Zhou, S. Asgari, S.A. Soomro, F. Elsehrawy, J. Halme, S. Ahmad, A. Hagfeldt, S.G. Hashmi, J. Mater. Chem. A 9, 10527 (2021)

    Article  CAS  Google Scholar 

  20. Y. Li, J. Zhu, H. Chu, J. Wei, F. Liu, M. Lv, J. Tang, B. Zhang, J. Yao, Z. Huo, L. Hu, S. Dai, Sci. China Chem. 58, 1489 (2015)

    Article  CAS  Google Scholar 

  21. A. Ahmad, F. Tezcan, G. Yerlikaya, H. Zia-ur-Rehman, Paksoy, G. Kardaş, J. Alloys Compd. 868, 159133 (2021)

    Article  CAS  Google Scholar 

  22. M. Amiri, K. Eskandari, M. Salavati-Niasari, Adv. Colloid Interface Sci. 271, 101982 (2019)

    Article  CAS  Google Scholar 

  23. N. Mir, M. Salavati-Niasari, Mater. Res. Bull. 48, 1660 (2013)

    Article  CAS  Google Scholar 

  24. Z. Da Meng, K. Zhang, W.C. Oh, J. Korean Inst. Met. Mater. 48, 674 (2010)

    CAS  Google Scholar 

  25. J. Banerjee, K. Dutta, D. Rana, Emerging nanostructured materials for energy and environmental science (Springer, Cham, 2019)

    Google Scholar 

  26. B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D. Wang, S. Dou, Energy Storage Mater. 24, 22 (2020)

    Article  Google Scholar 

  27. J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, L. Jiang, ACS Nano. 5, 590 (2011)

    Article  CAS  Google Scholar 

  28. C.T. Li, F.L. Wu, B.H. Lee, M.C.P. Yeh, J.T. Lin, ACS Appl. Mater. Interfaces. 9, 43739 (2017)

    Article  CAS  Google Scholar 

  29. T.D. Nguyen, Y.P. Lan, C.G. Wu, Inorg. Chem. 57, 1527 (2018)

    Article  CAS  Google Scholar 

  30. P. Naik, M.R. Elmorsy, R. Su, A. El-Shafei, A.V. Adhikari, New. J. Chem. 42, 9443 (2018)

    Article  CAS  Google Scholar 

  31. J.J. Bergkamp, S. Decurtins, S.X. Liu, Chem. Soc. Rev. 44, 863 (2015)

    Article  CAS  Google Scholar 

  32. B. Gadgil, P. Damlin, A. Viinikanoja, M. Heinonen, C. Kvarnström, J. Mater. Chem. A 3, 9731 (2015)

    Article  CAS  Google Scholar 

  33. C.L. Kuo, M.H. Huang, J. Phys. Chem. C 112, 11661 (2008)

    Article  CAS  Google Scholar 

  34. G.C. Patil, B.R. Sankapal, A. Ennaoui, R.B. Gupta, C.D. Lokhande, Simple chemical methods for thin film deposition (Springer, Singapore, 2023), pp.509–530

    Book  Google Scholar 

  35. Y.Z. Song, A.F. Zhu, Y. Song, Z.P. Cheng, J. Xu, J.F. Zhou, Gold. Bull. 45, 153 (2012)

    Article  CAS  Google Scholar 

  36. A. Abareshi, M.A. Pirlar, M. Houshiar, New. J. Chem. 45, 298 (2021)

    Article  CAS  Google Scholar 

  37. D.O. Idisi, J.A. Oke, I.T. Bello, Int. J. Energy Res. 45, 19772 (2021)

    Article  CAS  Google Scholar 

  38. F. Ganjouzadeh, S. Khorrami, S. Gharbi, J. Drug Deliv Sci. Technol. 71, 103340 (2022)

    Article  CAS  Google Scholar 

  39. X. Jiao, Y. Qiu, L. Zhang, X. Zhang, RSC Adv. 7, 52337 (2017)

    Article  CAS  Google Scholar 

  40. S.N. Alam, N. Sharma, L. Kumar, Graphene. 06, 1 (2017)

    Article  CAS  Google Scholar 

  41. H. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, P. Yi, P.K. Chu, Biomaterials. 30, 5622 (2009)

    Article  CAS  Google Scholar 

  42. J.M. Baruah, S. Kalita, J. Narayan, Int. Nano Lett. 9, 149 (2019)

    Article  CAS  Google Scholar 

  43. L. Ren, G.M. Chow, Mater. Sci. Eng. C 23, 113 (2003)

    Article  Google Scholar 

  44. S.M. Baizaee, M. Arabi, A.R. Bahador, Mater. Sci. Semicond. Process. 82, 135 (2018)

    Article  CAS  Google Scholar 

  45. I. Saikia, M. Hazarika, C. Tamuly, Mater. Res. Express. 3, 105007 (2016)

    Article  Google Scholar 

  46. P. Makal, D. Das, ACS Omega. 6, 4362 (2021)

    Article  CAS  Google Scholar 

  47. S. Khorrami, A. Zarepour, A. Zarrabi, Biotechnol Rep. 24, e00393 (2019)

    Article  Google Scholar 

  48. F. Yousefimehr, S. Jafarirad, R. Salehi, M.S. Zakerhamidi, Sci. Rep. 11, 11900 (2021)

    Article  CAS  Google Scholar 

  49. X.L. Huang, B. Zhang, L. Ren, S.F. Ye, L.P. Sun, Q.Q. Zhang, M.C. Tan, G.M. Chow, J. Mater. Sci. Mater. Med. 19, 2581 (2008)

    Article  CAS  Google Scholar 

  50. W. Ye, R. Long, H. Huang, Y. Xiong, J. Mater. Chem. C 5, 1008 (2017)

    Article  CAS  Google Scholar 

  51. Y.H. Su, Y.F. Ke, S.L. Cai, Q.Y. Yao, Light Sci. Appl. 1, e14 (2012)

    Article  Google Scholar 

  52. Y. Wang, C. Ma, C. Wang, P. Cheng, L. Xu, L. Lv, H. Zhang, Sol. Energy. 189, 412 (2019)

    Article  CAS  Google Scholar 

  53. A. Alshahrie, A.A. Alghamdi, P.M.Z. Hasan, F. Ahmed, H.M.E. Albalawi, A. Umar, A. Alsulami, Inorganics 10, 204 (2022)

    Article  CAS  Google Scholar 

  54. Y. Li, H. Wang, Q. Feng, G. Zhou, Z.S. Wang, Energy Environ. Sci. 6, 2156 (2013)

    Article  CAS  Google Scholar 

  55. L. Wei, S. Chen, Y. Yang, Y. Dong, W. Song, R. Fan, RSC Adv. 6, 100866 (2016)

    Article  CAS  Google Scholar 

  56. I. Ahmad, R. Jafer, S.M. Abbas, N. Ahmad, J. Ata-ur-Rehman, S. Iqbal, A.A. Bashir, Melaibari, M.H. Khan, J. Alloys Compd. 891, 162040 (2022)

    Article  CAS  Google Scholar 

  57. S.E. Koops, B.C. O’Regan, P.R.F. Barnes, J.R. Durrant, J. Am. Chem. Soc. 131, 4808 (2009)

    Article  CAS  Google Scholar 

  58. M. Hossein Khorasanizadeh, R. Monsef, M. Salavati-Niasari, H. Sh, W. Majdi, F.S. Hashim, Arab. J. Chem. 16, 105020 (2023)

    Article  CAS  Google Scholar 

  59. P.H. Joshi, D.P. Korfiatis, S.F. Potamianou, K.A.T. Thoma, Russ J. Electrochem. 49, 628 (2013)

    Article  CAS  Google Scholar 

  60. L. Wei, P. Wang, Y. Yang, Z. Zhan, Y. Dong, W. Song, R. Fan, Inorg. Chem. Front. 5, 54 (2018)

    Article  CAS  Google Scholar 

  61. S.P. Lim, A. Pandikumar, N.M. Huang, H.N. Lim, RSC Adv. 5, 44398 (2015)

    Article  CAS  Google Scholar 

  62. F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Seró, J. Bisquert, Phys. Chem. Chem. Phys. 13, 9083 (2011)

    Article  CAS  Google Scholar 

  63. A. Lasia, Electrochemical impedance spectroscopy and its applications (Springer, Cham, 2014), pp.1–367

    Google Scholar 

  64. R. Ramamoorthy, K. Karthika, A. Maggie Dayana, G. Maheswari, V. Eswaramoorthi, N. Pavithra, S. Anandan, R. Victor Williams, J. Mater. Sci. Mater. Electron. 28, 13678 (2017)

    Article  CAS  Google Scholar 

  65. A. Okello, B.O. Owuor, J. Namukobe, D. Okello, J. Mwabora, Heliyon 8, e09921 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HHJ, HRN, and VS. The first draft of the manuscript was written by HHJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hossein Rooholamini Nejad.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanzadeh Jeshari, H., Rooholamini Nejad, H. & Saheb, V. Synthesis of reduced graphene oxide coated with Au@Au2S nanocomposite and study of its photovoltaic properties for use in dye-sensitized solar cells. J Mater Sci: Mater Electron 34, 2127 (2023). https://doi.org/10.1007/s10854-023-11588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11588-z

Navigation