Skip to main content
Log in

Enhancement of magneto-dielectric properties of BaTiO3–NiFe2O4 multiferroic composite induced by lattice strain of Pr3+ doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein particulate multiferroic composite (1-x) Ba0.95Pr0.05TiO3 – xNiFe1.95Pr0.05O4 (x = 0.02, 0.05, 0.07 and 0.10) with tuneable magneto-dielectric properties are synthesized by solid state reaction. Chemical (sol–gel) method is employed for the preparation of individual Ba0.95Pr0.05TiO3 (ferroelectric) and NiFe1.95Pr0.05O4 (ferrite) phases. The effect of concentration of the individual phases on the microstructure, dielectric, magnetic and ferroelectric properties are systematically investigated. X-Ray diffraction patterns confirms the coexistence of two phases corresponding to tetragonal ferroelectric phase and cubic ferrite phase. Scanning electron microscopy (SEM) micrograph reveal that the average grain size decreases with increase in the ferrite concentration. The dielectric data obtained in the temperature range 100–400 K indicated the shifting of transition temperature to higher values and frequency range 20 Hz–2 MHz indicated the enhancement of the dielectric permittivity with increase in concentration of ferrite phase. Well defined PE and MH hysteresis loops have shown the modifications of the properties based on Pr doping and co-existence of the two phases. Such composites are potential candidates for multifunctional devices, device miniaturization and energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.  The data will be made available on reasonable request from corresponding author.

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    Article  CAS  Google Scholar 

  2. C.S. Antoniak, D. Schmitz, P. Borisov, F.M.F. Groot, S. Stienen, A. Warland, B. Krumme, R. Feyerherm, E. Dudzik, W. Kleemann, H. Wende, Nat. Comm. 4, 2051 (2013)

    Article  Google Scholar 

  3. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, Nature. 408, 944–946 (2000)

    Article  CAS  Google Scholar 

  4. M. Fiebig, J. Phys. D 38, R123–R152 (2005)

    Article  CAS  Google Scholar 

  5. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21–29 (2007)

    Article  CAS  Google Scholar 

  6. Y. Wang, J. Hu, Y. Lin, C.W. Nan, NPG Asia Mater. 2, 61–68 (2010)

    Article  Google Scholar 

  7. J. Ma, J. Hu, Z. Li, C.W. Nan, Adv. Mater. 23, 1062–1087 (2011)

    Article  CAS  Google Scholar 

  8. C.N.R. Rao, A. Sundaresan, R. Saha, J. Phys. Chem. Let. 3, 2237–2246 (2012)

    Article  CAS  Google Scholar 

  9. D.K. Pradhan, S. Sahoo, S.K. Barik, V.S. Puli, P. Misra, R.S. Katiyar, J. App Phys. 115, 194105 (2014)

    Article  Google Scholar 

  10. J. Boomgaard, R.A. Born, J. Mater. Sci. 13, 1538–1548 (1978)

    Article  Google Scholar 

  11. R. Grigalaitis, R. Vijatovic Petrovic, J.D. Bobic, B.D. Stojanovic, A.R. Dzunuzovic, R. Sobiestianskas, A. Brilingas, B.D. Stojanović, Ceram. Int. 40, 6165–6170 (2014)

    Article  CAS  Google Scholar 

  12. O. Condurache, I. Turcan, L. Curecheriu, C. Ciomaga, P. Postolache, G. Ciobanu, L. Mitoseriu, Ceram. Int. 43, 1098–1105 (2017)

    Article  CAS  Google Scholar 

  13. M. Vijatovic Petrovic, J.D. Bobic, B.D. Stojanovic, Synthesis and Characterization of Magnetic iron Oxide Nanoparticles (Elsevier Publisher, Amsterdam, 2018), pp. 545–554

    Google Scholar 

  14. R.J. Pandya, U.S. Joshi, O.F. Caltun, Procedia Mater. Sci. 10, 168–175 (2015)

    Article  CAS  Google Scholar 

  15. A. Jain, A.K. Panwar, A.K. Jha, Y. Sharma, Ceram. Int. 43, 10253–10262 (2017)

    Article  CAS  Google Scholar 

  16. R. Samad, M.D. Rather, K. Asokan, B. Want, J. Alloy Comp. 744, 453–462 (2018)

    Article  CAS  Google Scholar 

  17. D. Zhang, J. Cheng, J. Chai, J. Deng, R. Ren, Y. Su, H. Wang, C. Ma, C. Lee, W. Zhang, G.P. Zheng, M. Cao, J. Alloy Comp. 740, 1067–1076 (2018)

    Article  CAS  Google Scholar 

  18. P. Pahuja, R.K. Kotnala, R.P. Tandon, J. Alloy Comp. 617, 140–148 (2014)

    Article  CAS  Google Scholar 

  19. O. Goni Shovon, M.D. Rahaman, S. Tahsin, A.K.M. Akther, Hossain, J. Alloy Comp. 735, 291–311 (2018)

    Article  Google Scholar 

  20. D.P. Dutta, M. Roy, N. Maiti, A.K. Tyagi, Phys. Chem. Chem. Phys. 18, 9758 (2016)

    Article  CAS  Google Scholar 

  21. H.F. Zhang, S.W. Or, H.L.W. Chan, Mater. Res. Bull. 44, 1339 (2009)

    Article  CAS  Google Scholar 

  22. M.M. Vijatovic Petrovic, J.D. Bobic, T. Ramoska, J. Banys, B.D. Stojanovic, Ceram. Int. 37, 2669–2677 (2011)

    Article  Google Scholar 

  23. T. Parida, A. Kumar, B.S. Murty, G. Markandeyulu, J. Appl. Phys. 127, 114104 (2020)

    Article  CAS  Google Scholar 

  24. M.D. Rather, R. Samad, B. Want, Mater. Res. Express 6, 066310 (2019)

    Article  Google Scholar 

  25. A. Wilk, L. Kozielski, D. Michalik, D. Kozie, J. Makowska, Z. Zedzich, Materials. 15, 1058 (2022)

    Article  CAS  Google Scholar 

  26. M.C. Morris, H.F.M. Murdie, E.H. Evans, B. Paretzkin, H.S. Parker, N.P. Pyrros, Nat. Bur of Stnd (U S) Monograph 25(20), 9 (1984)

    Google Scholar 

  27. M.D. Rather, R. Samad, B. Want, J. Electron. Mater. 47, 2143 (2018)

    Article  CAS  Google Scholar 

  28. D. Varshney, K. Verma, A. Kumar, J. Mol. Struct. 1006, 447 (2011)

    Article  CAS  Google Scholar 

  29. G.H. Rather, M. Ikram, Physica B 599, 412577 (2020)

    Article  CAS  Google Scholar 

  30. G. Rana, U.C. Johri, K. Asokan, Europhys. Lett. 103(1), 17008 (2013)

    Article  Google Scholar 

  31. A.S. Abdel-Rehman, Research Square, (2022)

  32. S.K. Abdel-Aal, A.I. Beskrovnyi, A.I. Ionov, R.N. Mozhchil, A.S. Abdel-Rahman, Phys. Stat. Solid 218, 2100138 (2021)

    CAS  Google Scholar 

  33. S.K. Abdel-Aal, M.F. Kandeel, A.F. El-Sherif, A.S. Abdel-Rahman, Phys. Stat. Solid 218(12), 2100036 (2021)

    CAS  Google Scholar 

  34. S.K. Abdel-Aal, A.S. Abdel-Rahman, J. Nano Res. 22(9), 267 (2020)

    Article  CAS  Google Scholar 

  35. G. Dhir, P. Uniyal, N.K. Verma, J. Mater. Sci. 26, 3538–3544 (2015)

    CAS  Google Scholar 

  36. G. Dhir, P. Uniyal, N.K. Verma, J. Supercond. Nov. Magn. 27, 1569–1577 (2014)

    Article  CAS  Google Scholar 

  37. A.D. Shaikh, V.L. Mathe, Smart Mater. Struct. 18, 065014 (2009)

    Article  Google Scholar 

  38. K.W. Wagner, Ann. Phys. 40, 818 (1993)

    Google Scholar 

  39. G. Kumar, M. Jagadish, J. Mater. Sci. 11, 8344–8354 (2022)

    Google Scholar 

  40. R. Gao, Q. Zhang, Z. Xu, Z. Wang, G. Chen, X. Deng, W. Cai, J. Mater. Sci. 30, 10256–10273 (2019)

    CAS  Google Scholar 

  41. B. Want, M.U.D. Rather, R. Samad, J. Mater. Sci. 27, 5860–5866 (2016)

    CAS  Google Scholar 

  42. A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Mater. Sci. Eng. 116(1), 1–6 (2005)

    Article  Google Scholar 

  43. W. Khan, A.H. Naqvi, M. Gupta, S. Hussain, S. Kumar, J. Chem. Phys. 135, 054501 (2011)

    Article  Google Scholar 

  44. C.A. Hogarth, M.H. Islam, A.S.M.S. Rahman, J. Mater. Sci. 28, 518–528 (1993)

    Article  CAS  Google Scholar 

  45. R. Sharma, P. Pahuja, R.P. Tandon, Ceram. Int. 40, 9027–9036 (2014)

    Article  CAS  Google Scholar 

  46. A.A. El Ata, M.K. El Nimr, S.M. Attia, D. El Kony, A.H. Al-Hammadi, J. Magn. Magn. Mater. 297(1), 33–43 (2006)

    Article  Google Scholar 

  47. M. Jebli, C. Rayssi, J. Dhahri, M.B. Henda, H. Belmabrouk, A. Bajahzar, RSC Adv. 11, 23664 (2021)

    Article  CAS  Google Scholar 

  48. R.S. Devan, Y.R. Ma, B.K. Chougule, Mater. Chem. Phys. 115(1), 263–268 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Rubiya Samad wants to highly acknowledge Department of Science and Technology, Government of India for providing financial support vide reference no. DST/INSPIRE/04/2018/002527 under Inspire Faculty Scheme in order to carry out this work. The authors are also thankful to solid state research lab, Department of physics, University of Kashmir for carrying out P-E and M-H measurements. The authors are also thankful to Mr, Ramcharan meena, Transport lab, IUAC, New Delhi, for carrying the temperature dependent dielectric measurements as well as Geochronology lab IUAC, New Delhi for carrying out the powder XRD of the samples.

Funding

Department of Science and Technology, Government of India (Grant number: DST/INSPIRE/04/2018/002527).

Author information

Authors and Affiliations

Authors

Contributions

SJ contributed to the conduction of research, analysis of data and writing the paper. MRR and RS contributed to the Magnetic characterization, conductivity, activation energy and discussion about the data. KS contributed to the supervision, discussion and suggestions.

Corresponding author

Correspondence to Khalid Sultan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in the paper.

Ethical approval

No part of this paper has been published in any conference or journal. This paper is an original research carried out by the authors without any ethical violation.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahan, S., Rather, M.R., Samad, R. et al. Enhancement of magneto-dielectric properties of BaTiO3–NiFe2O4 multiferroic composite induced by lattice strain of Pr3+ doping. J Mater Sci: Mater Electron 34, 2175 (2023). https://doi.org/10.1007/s10854-023-11586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11586-1

Navigation