Skip to main content
Log in

Thermal plasma treatment of tin for the enhancement of field emission properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, the effect of treatment with Ar thermal plasma on the compositional, morphological, and field emission properties of Tin (Sn) has been investigated. For this purpose, Sn has been treated for different exposure times ranging from 2.5 to 20 min at a constant Ar flow rate of 10 L/min. X-ray Diffraction (XRD) analysis identifies no new phase formation. However, the crystallite size of plasma treated Sn goes on increasing upto 15 min and then decreases for treatment time of 20 min. Whereas, vice versa is true for dislocation line density. The anomalous trends are observed for stress and strain measurements of plasma treated Sn. Scanning Electron Microscopy (SEM) analysis of thermal plasma treated Sn reveals the formation of ridges, cones, droplets, cavities, voids and pores at different treatment times. The work function varies from 4.38 to 5.05 eV for different treatment times. The Field Emission (FE) parameters such as maximum current density (Jmax), turn on field (Eo) and field enhancement factor (β) are enhanced and come out to be in the range of 564 nA/cm2 to 2522 nA/cm2, 4 V/µm to 11 V/µm and 2600 to 4520 respectively. The density of surface structures, field enhancement factor (β), turn on field (Eo) and maximum current density (Jmax) are correlated with work function of thermal plasma treated Sn. The structured surfaces of Sn are highly beneficial for various applications like FE-SEM as well as LCD displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be available on reasonable request of editor.

References

  1. T. Feng, J. Zhang, Q. Li, X. Wang, K. Yu, S. Zou, Physica E: Low-Dimens Syst. Nanostruct. 36, 28 (2007). https://doi.org/10.1016/j.physe.2006.07.034

    Article  CAS  Google Scholar 

  2. Z.-H. Yang, C.-H. Ho, S. Lee, Appl. Surf. Sci. 349, 609 (2015). https://doi.org/10.1016/j.apsusc.2015.05.055

    Article  CAS  Google Scholar 

  3. M. Šíra, D. Trunec, P. Stahel, V. Buršíková, Z. Navrátil, J Buršík, J. Phys. D 38, 621 (2005). https://doi.org/10.1088/0022-3727/38/4/015

    Article  CAS  Google Scholar 

  4. D.H. Shin, C.U. Bang, J.H. Kim et al., IEEE Trans. Plasma Sci. 34, 1241 (2006). https://doi.org/10.1109/TPS.2006.876486

    Article  CAS  Google Scholar 

  5. O. Goossens, E. Dekempeneer, D. Vangeneugden, R. Van de Leest, C Leys, Surf. Coat. Technol. 142, 474 (2001). https://doi.org/10.1016/S0257-8972(01)01140-9

    Article  Google Scholar 

  6. E.P. Stuckert, E.R. Fisher, Sens. Actuators B: Chemical  208, 379 (2015). https://doi.org/10.1016/j.snb.2014.11.049

    Article  CAS  Google Scholar 

  7. G.N. Fursey, Appl. Surf. Sci. 215, 113 (2003). https://doi.org/10.1016/S0169-4332(03)00315-5

    Article  CAS  Google Scholar 

  8. E.J. Radauscher, K.H. Gilchrist, S.T.D. Dona et al., IEEE Trans. Electron. Devices. 63, 3753 (2016). https://doi.org/10.1109/TED.2016.2593905

    Article  CAS  Google Scholar 

  9. M. Akram, S. Bashir, S.A. Jalil, M.S. Rafique, A. Hayat, K. Mahmood, Mater. Res. Express. 5, 025029 (2018). https://doi.org/10.1088/2053-1591/aaa8ac

    Article  CAS  Google Scholar 

  10. J. Li, S. Yao, F. Xiao, SN Amirkhanian, Int. J. Pavement Eng. 23, 651 (2022). https://doi.org/10.1080/10298436.2020.1765242

    Article  CAS  Google Scholar 

  11. A. Kaleem, S. Bashir, M. Akram et al., Appl. Phys. A 128, 1 (2022). https://doi.org/10.1007/s00339-022-05789-2

    Article  CAS  Google Scholar 

  12. L. Kotte, G. Mäder, J. Roch, S. Kaskel, Contrib. Plasma Phys. 58, 327 (2018). https://doi.org/10.1002/ctpp.201700084

    Article  CAS  Google Scholar 

  13. D. Hwangbo, S. Kajita, N. Ohno, D. Sinelnikov,  IEEE Trans. Plasma Sci. 45, 2080 (2017). https://doi.org/10.1109/TPS.2017.2679211

    Article  CAS  Google Scholar 

  14. H.-Y. Hsu, J.-S. Yen, C.-Y. Lin et al., Appl. Sci. 13, 2531 (2023). https://doi.org/10.3390/app13042531

    Article  CAS  Google Scholar 

  15. M. Anitha, N. Anitha, I. Kulandaisamy, L. Amalraj, J. Solgel Sci. Technol. 86, 580 (2018). https://doi.org/10.1007/s10971-018-4673-3

    Article  CAS  Google Scholar 

  16. S. Shanmugan, D. Mutharasu, Radiat. Phys. Chem. 81, 201 (2012). https://doi.org/10.1016/j.radphyschem.2011.09.016

    Article  CAS  Google Scholar 

  17. B. Illés, A. Skwarek, J. Ratajczak, K. Dušek, D Bušek, J. Alloys Compd. 785, 774 (2019). https://doi.org/10.1016/j.jallcom.2019.01.247

    Article  CAS  Google Scholar 

  18. Å. Haryński, D. Czylkowski, B. Hrycak et al., Appl. Surf. Sci. 615, 156472 (2023). https://doi.org/10.1016/j.apsusc.2023.156472

    Article  CAS  Google Scholar 

  19. M. Yang, T. Yi, F. Zheng et al., J. Nucl. Mater. 575, 154210 (2023). https://doi.org/10.1016/j.jnucmat.2022.154210

    Article  CAS  Google Scholar 

  20. A. Belkind, S Gershman (2008) Vacuum Coating Technol. Nov., 46

  21. S. Chander, M. Dhaka, Thin Solid Films. 625, 131 (2017). https://doi.org/10.1016/j.tsf.2017.01.052

    Article  CAS  Google Scholar 

  22. S. Chander, A. Purohit, S. Patel, M. Dhaka, Physica E: Low-Dimens. Syst. Nanostruct. 89, 29 (2017). https://doi.org/10.1016/j.physe.2017.02.002

    Article  CAS  Google Scholar 

  23. L.K. Singh, A. Bhadauria, S. Jana, T. Laha, Acta Metall. Sin. (2018). https://doi.org/10.1007/s40195-018-0795-4

    Article  Google Scholar 

  24. S. Sahoo, S. Singh, Ceram. Int. 43, 15561 (2017). https://doi.org/10.1016/j.ceramint.2017.08.108

    Article  CAS  Google Scholar 

  25. M. Aftab, M.Z. Butt, D. Ali, M.U. Tanveer, A. Hussnain, Proc. Pak. Acad. Sci. Phys. Comput. Sci. 57, 51 (2020)

    Google Scholar 

  26. N. Ali, S. Bashir, A.M. Alshehri, N. Begum, Materials. 14, 3671 (2021). https://doi.org/10.3390/ma14133671

    Article  CAS  Google Scholar 

  27. B.H. Toby, Powder Diffr. 21, 67 (2006). https://doi.org/10.1154/1.2179804

    Article  CAS  Google Scholar 

  28. R. Amir, S. Bashir, M. Akram et al., Radia. Effects Defects Solids (2022). https://doi.org/10.1080/10420150.2022.2073882

    Article  Google Scholar 

  29. F. Poitrasson, F.-X. d’Abzac, J. Anal. At. Spectrom. 32, 1075 (2017). https://doi.org/10.1039/C7JA00084G

    Article  CAS  Google Scholar 

  30. H. Ahmad, S. Bashir, A. Hayat, K. Mahmood, A. Batool, F. Hussain, IEEE Trans. Plasma Sci. 48, 4191 (2020). https://doi.org/10.1109/TPS.2020.3035882

    Article  CAS  Google Scholar 

  31. A. Dawood, S. Bashir, N.A. Chishti, M.A. Khan, A. Hayat, Laser Part. Beams. 36, 261 (2018). https://doi.org/10.1017/S0263034618000137

    Article  CAS  Google Scholar 

  32. Y. Pauleau, Materials Surface Processing by Directed Energy Techniques (Elsevier, Amsterdam, 2006)

    Google Scholar 

  33. N. Ali, S. Bashir, A.M. Alshehri, N. Begum, Coatings. 12, 1193 (2022). https://doi.org/10.3390/coatings12081193

    Article  CAS  Google Scholar 

  34. N. Ali, S. Bashir, M.S. Rafique et al., Chin. Phys. B 26, 015204 (2017). https://doi.org/10.1088/1674-1056/26/1/015204

    Article  CAS  Google Scholar 

  35. H. Itagaki, K. Hanada, S. Hirose, Jpn. J. Appl. Phys. 59, SJJG01 (2020). https://doi.org/10.35848/1347-4065/ab8282

    Article  CAS  Google Scholar 

  36. H. Husin, T. Asnawi, A. Firdaus, H. Husaini, I. Ibrahim, F. Hasfita, (2018) IOP Conference Series: Materials Science and Engineering, IOP Publishing

  37. S. Ahmad, S. Bashir, M. Akram et al., Surface Interface Anal. (2022). https://doi.org/10.1002/sia.7169

    Article  Google Scholar 

  38. M.A. Ali, S. Bashir, M. Akram et al., Nuclear instruments and methods. Phys. Res. Sect. B: Beam Interact. Mater. Atoms. 423, 7 (2018). https://doi.org/10.1016/j.nimb.2018.03.004

    Article  CAS  Google Scholar 

  39. J. Saghaei, A.M. Brewer, W. Jiang, S.M. Russell, P.L. Burn, A Pivrikas, Thin Solid Films. 718, 138475 (2021). https://doi.org/10.1016/j.tsf.2020.138475

    Article  CAS  Google Scholar 

  40. I. Baikie, P. Smith, D. Porterfield, P. Estrup, Rev. Sci. Instrum. 70, 1842 (1999). https://doi.org/10.1063/1.1149678

    Article  CAS  Google Scholar 

  41. K.H. Lee, H.W. Jang, K.-B. Kim, Y.-H. Tak, J.-L. Lee, J. Appl. Phys. 95, 586 (2004). https://doi.org/10.1063/1.1633351

    Article  CAS  Google Scholar 

  42. D. Lu, A. Ogino, B. Liang, J. Liu, M. Nagatsu, Jpn. J. Appl. Phys. 48, 090206 (2009). Doi:DOI. https://doi.org/10.1143/JJAP.48.090206

    Article  CAS  Google Scholar 

  43. M. Akram, S. Bashir, S.A. Jalil, M.S. Rafique, A. Hayat, K. Mahmood, Appl. Phys. A 124, 1 (2018). https://doi.org/10.1007/s00339-018-1612-7

    Article  CAS  Google Scholar 

  44. C.-T. Hsieh, J.-M. Ting, Chem. Phys. Lett. 413, 84 (2005). https://doi.org/10.1016/j.cplett.2005.07.050

    Article  CAS  Google Scholar 

  45. M. Shakerzadeh, N. Xu, M. Bosman et al., Carbon. 49, 1018 (2011). https://doi.org/10.1016/j.carbon.2010.11.010

    Article  CAS  Google Scholar 

  46. S. Kajita, N. Ohno, Y. Hirahata, M. Hiramatsu, Fusion Eng. Des. 88, 2842 (2013). https://doi.org/10.1016/j.fusengdes.2013.05.014

    Article  CAS  Google Scholar 

  47. C. Li, Y. Yang, X. Sun et al., Nanotechnology. 18, 135604 (2007). https://doi.org/10.1088/0957-4484/18/13/135604

    Article  CAS  Google Scholar 

  48. M. Ojima, S. Hiwatashi, H. Araki, A. Fujii, M. Ozaki, K. Yoshino, Appl. Phys. Lett. 88, 053103 (2006). https://doi.org/10.1063/1.2170436

    Article  CAS  Google Scholar 

  49. A.V. Arkhipov, P.G. Gabdullin, N.M. Gnuchev, S.N. Davydov, S.I. Krel, B.A. Loginov, St. Petersburg Polytech. Univers. J. Phys. Math. 1, 47 (2015). https://doi.org/10.1016/j.spjpm.2015.03.011

    Article  Google Scholar 

  50. S. Bhattacharjee, R. Sarkar, P. Chattopadhyay et al., Appl. Phys. A 128, 501 (2022). https://doi.org/10.1007/s00339-022-05638-2

    Article  CAS  Google Scholar 

  51. S.N. Sami, L. Diaz, M. Sanati, R. Joshi, J. Appl. Phys. (2020). https://doi.org/10.1063/5.0031568

    Article  Google Scholar 

  52. J. Lin, X. Dai, X. Liang et al., Adv. Funct. Mater. 30, 1907265 (2020). https://doi.org/10.1002/adfm.201907265

    Article  CAS  Google Scholar 

  53. N. Lang, W Kohn, Phys. Rev. B 3, 1215 (1971). https://doi.org/10.1103/PhysRevB.3.1215

    Article  Google Scholar 

  54. A. Haque, S. Karmakar, R.K. Trivedi, B. Chakraborty, R. Droopad, ACS Omega (2023). https://doi.org/10.1021/acsomega.2c07576

    Article  Google Scholar 

  55. J.-H. Wang, T.-H. Yang, W.-W. Wu, L.-J. Chen, C.-H. Chen, C.-J. Chu, Nanotechnology. 17, 719 (2006). https://doi.org/10.1088/0957-4484/17/3/017

    Article  CAS  Google Scholar 

  56. J. Xu, K. Yu, Z. Zhu, Phys. E: Low-Dimen. Syst. Nanostruct. 42, 1451 (2010). https://doi.org/10.1016/j.physe.2009.11.115

    Article  CAS  Google Scholar 

  57. J. Majumdar, S. Bhattacharjee, Front. Phys. 9, 310 (2021). https://doi.org/10.3389/fphy.2021.674928

    Article  Google Scholar 

  58. A.K. Singh, J. Kumar, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4790323

    Article  Google Scholar 

  59. R. Gupta, R. Chauhan, S. Chakarvarti et al., J. Mater. Sci.: Mater. Electron. 29, 19013 (2018). https://doi.org/10.1007/s10854-018-0027-8

    Article  CAS  Google Scholar 

  60. M.M.H. Raza, M. Sadiq, M. Zulfequar, S. Husain, J Ali, J. Phys. Chem. Solids. 178, 111309 (2023). https://doi.org/10.1016/j.jpcs.2023.111309

    Article  CAS  Google Scholar 

  61. M.M.H. Raza, M. Sadiq, M. Zulfequar, S. Husain, J Ali, Diam. Relat. Mater. 132, 109627 (2023). https://doi.org/10.1016/j.diamond.2022.109627

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SMKS: The work is actually MPhil research work of Syed Muhammad Kamran Shabbir who performed whole experiment and wrote paper. SB: SB is supervisor of Syed Muhammad Kamran Shabbir who planned and designed this whole research work of this manuscript and contributed a lot. MA: MA is co-supervisor of this research work. She helped a lot for field emission measurements. MSR: Helped to designing and fabricate Thermal plasma set-up. KM: Helped for successful experimental set-up. SN and SR: Both helped to perform work function measurements. SA, MAA, MH, MAM and MS: They are collaborators for experimental set-ups of thermal plasma and field emission.

Corresponding author

Correspondence to Shazia Bashir.

Ethics declarations

Conflict of interest

There is no competing interest for any authors.

Ethical approval

All Ethical Standards are strictly compliance.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabbir, S.M.K., Bashir, S., Akram, M. et al. Thermal plasma treatment of tin for the enhancement of field emission properties. J Mater Sci: Mater Electron 34, 2244 (2023). https://doi.org/10.1007/s10854-023-11564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11564-7

Navigation