Skip to main content
Log in

A novel f-MWCNT-based nanocomposite for enhancement of photoconversion efficiency of DSSC

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we demonstrate the strategic incorporation of p-type NiO and f-MWCNTs into n-type TiO2-active layer that leads to significant augmentation in the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). The NiO@f-MWCNT composites were prepared by in situ precipitation method with different concentrations of MWCNTs. The presence of NiO as and MWCNTs has been confirmed by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR) and Raman spectroscopy. The structural orientation was also confirmed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements. The optical measurements like UV–Vis absorbance and photoluminescence spectra confirmed the band gap, absorption and electronic transitions. Fluorescence resonance energy transfer (FRET) mechanism exists in between N719 dye and NiO. The electrochemical measurements confirmed the facile charge transfer kinetics within all the samples and delivered superior PCE values of composites. However, the highest PCE values of 6.50% were observed in 20% composite due to maximum charge transfer kinetics and least recombination processes. The improvement in PCE values due to enhanced light-absorbing ability as well as superior charge conducting ability, lower internal resistance and lower charge recombination rate of NiO@f-MWCNT perfectly matching with N719 dye. As a strategic incorporation, nearly 34% enhancement was noticed in PCE values over bare TiO2 photoanode, opening new horizons for photoanode modification using uniquely functionalized MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)

    Article  CAS  Google Scholar 

  2. P. Ranganathan, R. Sasikumar, S.M. Chen, S.P. Rwei, P. Sireesha, Enhanced photovoltaic performance of dye-sensitized solar cells based on nickel oxide supported on nitrogen-doped graphene nanocomposite as a photoanode. J. Colloid Interface Sci. 504, 570–578 (2017). https://doi.org/10.1016/j.jcis.2017.06.012

    Article  CAS  Google Scholar 

  3. G. Anantharaj, N. Lakshminarasimhan, Interfacial modification of photoanode|electrolyte interface using oleic acid enhancing the efficiency of dye-sensitized solar cells. ACS Omega 3(12), 18285–18294 (2018). https://doi.org/10.1021/acsomega.8b02648

    Article  CAS  Google Scholar 

  4. K. Nakayama, C. Luangchaisri, C. Muangphat, K. Praweerawat, Preparation of NiO/TiO2 composite films for enhanced dye sensitized solar cell efficiency. Mater. Today Proc. 23, 690–695 (2020)

    Article  CAS  Google Scholar 

  5. M. Szindler, M.M. Szindler, The effect of ZnO/NiO nanocomposite on the properties of a photoelectrode of a dye sensitized solar cell. Dig. J. Nanomater. Biostructures. 15, 815–822 (2020)

    Article  Google Scholar 

  6. M. Memari, N. Memarian, Designed structure of bilayer TiO 2–Nb 2 O 5 photoanode for increasing the performance of dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 31, 2298–2307 (2020)

    Article  CAS  Google Scholar 

  7. L. Kavan, Z. Vlckova Zivcova, M. Zlamalova, S.M. Zakeeruddin, M. Grätzel, Electron-selective layers for dye-sensitized solar cells based on TiO2 and SnO2. J. Phys. Chem. C 124(12), 6512–6521 (2020)

    Article  CAS  Google Scholar 

  8. C.H. Tsai, C.M. Lin, Y.C. Liu, Increasing the effciency of dye-sensitized solar cells by adding nickel oxide nanoparticles to titanium dioxideworking electrodes. Coatings 10(2), 1–13 (2020). https://doi.org/10.3390/coatings10020195

    Article  CAS  Google Scholar 

  9. M.E. Yeoh, K.Y. Chan, Recent advances in photo-anode for dye-sensitized solar cells: a review. Int. J. Energy Res. 41(15), 2446–2467 (2017). https://doi.org/10.1002/er.3764

    Article  Google Scholar 

  10. J. Bandara, U.W. Pradeep, R.G.S.J. Bandara, The role of N-p junction electrodes in minimizing the charge recombination and enhancement of photocurrent and photovoltage in dye sensitized solar cells. J. Photochem. Photobiol. A Chem. 170(3), 273–278 (2005). https://doi.org/10.1016/j.jphotochem.2004.08.023

    Article  CAS  Google Scholar 

  11. K. Galatsis, L. Cukrov, W. Wlodarski, P. McCormick, K. Kalantar-Zadeh, E. Comini, G. Sberveglieri, P- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique. Sensors Actuators, B Chem. 93(1–3), 562–565 (2003). https://doi.org/10.1016/S0925-4005(03)00233-8

    Article  CAS  Google Scholar 

  12. H. Xie, C. Hou, H. Wang, Q. Zhang, Y. Li, S, N Co-doped graphene quantum dot/TiO2 composites for efficient photocatalytic hydrogen generation. Nanoscale Res. Lett. 12(1), 1–8 (2017)

    Article  CAS  Google Scholar 

  13. M. Yadav, A. Yadav, R. Fernandes, Y. Popat, M. Orlandi, A. Dashora, D.C. Kothari, A. Miotello, B.L. Ahuja, N. Patel, Tungsten-doped TiO2/reduced graphene oxide nano-composite photocatalyst for degradation of phenol: a system to reduce surface and bulk electron-hole recombination. J. Environ. Manage. 203, 364–374 (2017)

    Article  CAS  Google Scholar 

  14. L.I. Cao, M.J. Meziani, S. Sahu, Y.-P. Sun, Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46(1), 171–180 (2013)

    Article  CAS  Google Scholar 

  15. E. López, J. Kim, A.M. Shanmugharaj, S.H. Ryu, Multiwalled carbon nanotubes-supported nickel catalysts for the steam reforming of propane. J. Mater. Sci. 47(6), 2985–2994 (2012). https://doi.org/10.1007/s10853-011-6132-1

    Article  CAS  Google Scholar 

  16. Y. Yin, Y. Jia, X. Zhang, C. Ma, Z. Sun, S. Yang, Facile synthesis of NiO/MWCNT composites by a vacuum solution infiltration method for lithium-ion batteries. J. Appl. Electrochem. 44(11), 1185–1191 (2014). https://doi.org/10.1007/s10800-014-0744-5

    Article  CAS  Google Scholar 

  17. T.A. Geleta, T. Imae, Nanocomposite photoanodes consisting of P-NiO/n-ZnO heterojunction and carbon quantum dot additive for dye-sensitized solar cells. ACS Appl. Nano Mater. 4(1), 236–249 (2021). https://doi.org/10.1021/acsanm.0c02547

    Article  CAS  Google Scholar 

  18. M.F. Silva, L.A.S. De Oliveira, M.A. Ciciliati, L.T. Silva, B.S. Pereira, A.A.W. Hechenleitner, D.M.F. Oliveira, K.R. Pirota, F.F. Ivashita, A. Paesano, J. Martin Pastor, J. Iñaki Pérez-Landazábal, E.A.G. Pineda, Nanometric particle size and phase controlled synthesis and characterization of γ-Fe2O3 or (α + γ)-Fe2O3 by a modified sol-gel method. J. Appl. Phys. (2013). https://doi.org/10.1063/14821253

    Article  Google Scholar 

  19. M.M. Hussain, M.M. Rahman, A.M. Asiri, Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment. J. Environ. Sci. (China) 53, 27–38 (2017). https://doi.org/10.1016/j.jes.2016.03.028

    Article  CAS  Google Scholar 

  20. T.L. Chiang, C.S. Chou, D.H. Wu, C.M. Hsiung, Applications of P-Type NiO in dye-sensitized solar cells. Adv. Mater. Res. 239, 1747–1750 (2011)

    Article  Google Scholar 

  21. N. Abdolhi, A. Soltani, H.K. Fadafan, V. Erfani-Moghadam, A.D. Khalaji, H. Balakheyli, Preparation, characterization and toxicity evaluation of Co3O4 and NiO-filled multi-walled carbon nanotubes loaded to chitosan. Nano-Structur. Nano-Objects 12, 182–187 (2017). https://doi.org/10.1016/j.nanoso.2017.09.008

    Article  CAS  Google Scholar 

  22. R. Kaur, N. Priya, A. Deep, Improved performance of carbon nanotubes-manganese doped cadmium sulfide quantum dot nanocomposite based solar cell. Mater. Res. Express 3(1), 15501 (2016). https://doi.org/10.1088/2053-1591/3/1/015501

    Article  CAS  Google Scholar 

  23. P. Shah, C.N. Murthy, Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal. J. Memb. Sci. 437, 90–98 (2013)

    Article  CAS  Google Scholar 

  24. M. Raissan Al-Bahrani, L. Liu, W. Ahmad, J. Tao, F. Tu, Z. Cheng, Y. Gao, NiO-NF/MWCNT nanocomposite catalyst as a counter electrode for high performance dye-sensitized solar cells. Appl. Surf. Sci. 331, 333–338 (2015). https://doi.org/10.1016/j.apsusc.2015.01.015

    Article  CAS  Google Scholar 

  25. R. Singh, N. Kaur, Navjyoti, A. Mahajan, Ni2+ enriched carbon nanotubes nanohybrids based non-platinum counter electrodes for dye sensitized solar cells. Sol. Energy 226, 31–39 (2021). https://doi.org/10.1016/j.solener.2021.08.028

    Article  CAS  Google Scholar 

  26. H.M. Ghartavol, M.R. Mohammadi, A. Afshar, Y. Li, On the assessment of incorporation of CNT-TiO2 core-shell structures into nanoparticle TiO2 photoanodes in dye-sensitized solar cells. Photochem. Photobiol. Sci. 18(7), 1840–1850 (2019). https://doi.org/10.1039/c9pp00100j

    Article  CAS  Google Scholar 

  27. I. Mihalache, A. Radoi, M. Mihaila, C. Munteanu, A. Marin, M. Danila, M. Kusko, C. Kusko, Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots. Electrochim. Acta 153, 306–315 (2015). https://doi.org/10.1016/j.electacta.2014.11.200

    Article  CAS  Google Scholar 

  28. K.K. Sonigara, J.V. Vaghasiya, J. Prasad, H.K. Machhi, M.S. Ansari, M. Qureshi, S.S. Soni, Augmentation in photocurrent through organic ionic plastic crystals as an efficient redox mediator for solid-state mesoscopic photovoltaic devices. Sustain. Energy Fuels 5(5), 1466–1476 (2021)

    Article  CAS  Google Scholar 

  29. Y. Hwa, W.S. Kim, B.C. Yu, J.H. Kim, S.H. Hong, H.J. Sohn, Facile synthesis of Si/TiO2 (Anatase) core-shell nanostructured anodes for rechargeable Li-ion batteries. J. Electroanal. Chem. 712, 202–206 (2014). https://doi.org/10.1016/J.JELECHEM.2013.11.023

    Article  CAS  Google Scholar 

  30. M.M. Maye, L. Han, N.N. Kariuki, N.K. Ly, W.B. Chan, J. Luo, C.J. Zhong, Gold and alloy nanoparticles in solution and thin film assembly: spectrophotometric determination of molar absorptivity. Anal. Chim. Acta 496(1–2), 17–27 (2003). https://doi.org/10.1016/S0003-2670(03)00986-3

    Article  CAS  Google Scholar 

  31. T. Alammar, O. Shekhah, J. Wohlgemuth, A.V. Mudring, Ultrasound-assisted synthesis of mesoporous β-Ni(OH) 2 and NiO nano-sheets using ionic liquids. J. Mater. Chem. 22(35), 18252–18260 (2012). https://doi.org/10.1039/c2jm32849f

    Article  CAS  Google Scholar 

  32. A. Nath, A. Shah, L.R. Singh, M. Mahato, Waste plastic-derived NiO-MWCNT composite as visible light photocatalyst for degradation of methylene blue dye. Nanotechnol. Environ. Eng. 6(3), 70 (2021). https://doi.org/10.1007/s41204-021-00163-8

    Article  CAS  Google Scholar 

  33. K. Nikita, D. Ray, V.K. Aswal, C.N. Murthy, Surface modification of functionalized multiwalled carbon nanotubes containing mixed matrix membrane using click chemistry. J. Memb. Sci. 596, 117710 (2020)

    Article  CAS  Google Scholar 

  34. V. Usha, R. Vettumperumal, S. Kalyanaraman, R. Thangavel, Analysis of linear and nonlinear optical properties of NiO nanoparticles by Sol-Gel method. Int. J. Nanosci. 17(5), 1–9 (2018). https://doi.org/10.1142/S0219581X18500035

    Article  CAS  Google Scholar 

  35. C.Y. Kuo, T. Haupricht, J. Weinen, H. Wu, K.D. Tsuei, M.W. Haverkort, A. Tanaka, L.H. Tjeng, Challenges from experiment: electronic structure of NiO. Eur. Phys. J. Spec. Top. 226(11), 2445–2456 (2017). https://doi.org/10.1140/epjst/e2017-70061-7

    Article  CAS  Google Scholar 

  36. C.S. Chou, Y.J. Lin, R.Y. Yang, K.H. Liu, Preparation of TiO2/NiO composite particles and their applications in dye-sensitized solar cells. Adv. Powder Technol. 22(1), 31–42 (2011). https://doi.org/10.1016/j.apt.2010.03.003

    Article  CAS  Google Scholar 

  37. L. Li, R. Chen, G. Jing, G. Zhang, F. Wu, S. Chen, Improved performance of TiO2 electrodes coated with NiO by magnetron sputtering for dye-sensitized solar cells. Appl. Surf. Sci. 256(14), 4533–4537 (2010)

    Article  CAS  Google Scholar 

  38. M. Khannam, R. Boruah, S.K. Dolui, An Efficient Quasi-Solid State Dye Sensitized Solar Cells Based on Graphene Oxide/Gelatin Gel Electrolyte with NiO Supported TiO2 Photoanode. J. Photochem. Photobiol. A Chem. 335, 248–258 (2017)

    Article  CAS  Google Scholar 

  39. R. Narayanan, M. Deepa, A.K. Srivastava, S.M. Shivaprasad, Efficient Plasmonic Dye-Sensitized Solar Cells with Fluorescent Au-Encapsulated C-Dots. ChemPhysChem 15(6), 1106–1115 (2014). https://doi.org/10.1002/cphc.201300958

    Article  CAS  Google Scholar 

  40. J.V. Vaghasiya, K.K. Sonigara, L. Suresh, M. Panahandeh-Fard, S.S. Soni, S.C. Tan, Efficient power generating devices utilizing low intensity indoor lights via non-radiative energy transfer mechanism from organic ionic redox couples. Nano Energy 60, 457–466 (2019). https://doi.org/10.1016/j.nanoen.2019.03.086

    Article  CAS  Google Scholar 

  41. M.P. Deshpande, K.N. Patel, V.P. Gujarati, K. Patel, S.H. Chaki, Structural, thermal and optical properties of nickel oxide (NiO) nanoparticles synthesized by chemical precipitation method. Adv. Mater. Res. 1141, 65–71 (2016)

    Article  Google Scholar 

  42. C. Berney, G. Danuser, FRET or No FRET: a quantitative comparison. Biophys. J. 84(6), 3992–4010 (2003). https://doi.org/10.1016/S0006-3495(03)75126-1

    Article  CAS  Google Scholar 

  43. H. Pang, Q. Lu, Y. Li, F. Gao, Facile synthesis of nickel oxide nanotubes and their antibacterial Electrochemical and Magnetic Properties. Chem. Commun. 48, 7542–7544 (2009). https://doi.org/10.1039/b914898a

    Article  CAS  Google Scholar 

  44. L.N. Dang Quang, A.K. Kaliamurthy, N.H. Hao, Co-sensitization of metal based N719 and metal free D35 dyes: an effective strategy to improve the performance of DSSC. Opt. Mater. (Amst) 111, 110589 (2021). https://doi.org/10.1016/j.optmat.2020.110589

    Article  CAS  Google Scholar 

  45. R.B. Onyancha, U.O. Aigbe, K.E. Ukhurebor, P.W. Muchiri, Facile synthesis and applications of carbon nanotubes in heavy-metal remediation and biomedical fields: a comprehensive review. J. Mol. Struct. 1238, 130462 (2021). https://doi.org/10.1016/j.molstruc.2021.130462

    Article  CAS  Google Scholar 

  46. A. Roy, A. Ray, S. Saha, M. Ghosh, T. Das, B. Satpati, M. Nandi, S. Das, NiO-CNT composite for high performance supercapacitor electrode and oxygen evolution reaction. Electrochim. Acta 283, 327–337 (2018). https://doi.org/10.1016/j.electacta.2018.06.154

    Article  CAS  Google Scholar 

  47. A. Subramanian, Z. Pan, G. Rong, H. Li, L. Zhou, W. Li, Y. Qiu, Y. Xu, Y. Hou, Z. Zheng, Y. Zhang, Graphene quantum dot antennas for high efficiency förster resonance energy transfer based dye-sensitized solar cells. J. Power. Sources 343, 39–46 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.043

    Article  CAS  Google Scholar 

  48. S. Itzhakov, S. Buhbut, E. Tauber, T. Geiger, A. Zaban, D. Oron, Design Pprinciples of FRET-based dye-sensitized solar cells with buried quantum dot donors. Adv. Energy Mater. 1(4), 626–633 (2011). https://doi.org/10.1002/aenm.201100110

    Article  CAS  Google Scholar 

  49. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes. Carbon N. Y. 46(6), 833–840 (2008). https://doi.org/10.1016/j.carbon.2008.02.012

    Article  CAS  Google Scholar 

  50. B. Karthikeyan, Förster resonance energy transfer and excited state life time reduction of rhodamine 6G with NiO nanorods in PVP films. Spectrochim. Acta - Part A Mol Biomol. Spectrosc. 173, 301–306 (2017). https://doi.org/10.1016/j.saa.2016.09.004

    Article  CAS  Google Scholar 

  51. V.P. Kumar, S. Mathew, V.R. Anand, P. Radhakrishnan, V.P.N. Nampoori, A. Mujeeb, Defect level dependent visible emission of nickel oxide nanoparticles through controlled calcination temperature. Optik (Stuttg). 231, 166388 (2021)

    Article  Google Scholar 

  52. Y. Han, R.J. Dillon, C.J. Flynn, E.S. Rountree, L. Alibabaei, J.F. Cahoon, J.M. Papanikolas, J.L. Dempsey, Interfacial electron transfer yields in dye-sensitized nio photocathodes correlated to excited-state dipole orientation of ruthenium chromophores. Can. J. Chem. 96(9), 865–874 (2018)

    Article  CAS  Google Scholar 

  53. P.P. Das, A. Roy, S. Agarkar, P.S. Devi, Hydrothermally synthesized fluorescent Zn2SnO4 nanoparticles for dye sensitized solar cells. Dye. Pigment. 154, 303–313 (2018). https://doi.org/10.1016/j.dyepig.2017.12.066

    Article  CAS  Google Scholar 

  54. J. Huang, N. Zhu, T. Yang, T. Zhang, P. Wu, Z. Dang, Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosens. Bioelectron. 72, 332–339 (2015). https://doi.org/10.1016/j.bios.2015.05.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the Department of Science and Technology (DST-WOS-A) through SR/WOS-A/CS-79/2018 for the financial support in this project.

Funding

The research leading to these results received funding from Department of Science and Technology (DST-WOS-A) through grant agreement no. SR/WOS-A/CS-79/2018.

Author information

Authors and Affiliations

Authors

Contributions

CNM: designed the experiments and was responsible for the overall writing of the manuscript and interpretation of the data. SSS: was involved in designing some experiments and data interpretation. The authors contribution has been mentioned with a "#" on the title page. NP and HM: contributed equally to the experimental work.

Corresponding authors

Correspondence to C. N. Murthy or Saurabh S. Soni.

Ethics declarations

Competing interests

There are no Competing interests and 'Research Data Policy & Data Availability" has been maintained.

Ethical approval

The authors have no relevant financial or non-financial interests to disclose. The authors declare that the Compliances with Ethical Standards has been maintained and no part of this work has been submitted previously to any journal for consideration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1327 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, N., Murthy, C.N., Machhi, H.K. et al. A novel f-MWCNT-based nanocomposite for enhancement of photoconversion efficiency of DSSC. J Mater Sci: Mater Electron 34, 2129 (2023). https://doi.org/10.1007/s10854-023-11558-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11558-5

Navigation