Skip to main content
Log in

Waste plastic-derived NiO-MWCNT composite as visible light photocatalyst for degradation of methylene blue dye

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Low-cost and visible light photocatalysts are essential to achieve industrial-scale photocatalysis. Towards this goal, waste-derived preparation of nanophotocatalysts can be an important direction. Herein, we report waste-derived preparation of nickel oxide–multiwall carbon nanotube (NiO-MWCNT) and its application for visible light photocatalysis to degrade methylene blue (MB) dye. NiO nanoparticle (size ~ 4 nm) was prepared by the coprecipitation method. NiO-MWCNT composite was prepared by thermocatalytic pyrolysis using NiO nanoparticle and high-density polyethylene (HDPE) waste plastic. The average length and diameter of MWCNT were found to be ~ 300 nm and 66 nm, respectively. The NiO-MWCNT composite photocatalyst is found to have a band gap of 3.02 eV along with characteristic CNTs X-ray diffraction (XRD) peak (26.12°), Raman D, G peaks. The decolorization% of MB dye is achieved up to 92.4% using NiO-MWCNT catalyst under 28 W light-emitting diode (LED) visible light within 1 h. The decolorization% for 1 Sun equivalent light exposure is found to be 87.45% within 1 h. A degradation pathway of MB dye has been proposed based on the ESI–MS data leading to the formation of different intermediate fragments of m/z 214, 193, 186, 167, 158, 150, 141, 125, 114, 109, and 102. The study will generate momentum in solar-based industrial-scale photocatalysis for pollutant management and other solar-based chemical transformations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kaza SY, Lisa C, Perinaz BT, Frank WV. (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. urban development;. Washington, DC: World Bank. https://openknowledge.worldbank.org/handle/10986/30317 License: CC BY 3.0 IGO. Accessed on June 2, 2021

  2. Rigamonti L, Grosso M, Møller J, Sanchez VM, Magnani S, Christensen TH (2014) Environmental evaluation of plastic waste management scenarios. Resources, Conserv and Recycling 85:42–53. https://doi.org/10.1016/j.resconrec.2013.12.012

    Article  Google Scholar 

  3. Lemaire A, Limbourg S (2019) How can food loss and waste management achieve sustainable development goals. J Clean Prod 234:1221–1234. https://doi.org/10.1016/j.jclepro.2019.06.226

    Article  Google Scholar 

  4. Praswasti PD, Wulan K, Wijardono SB (2017) Finding an optimum period of oxidative heat treatment on ss 316 catalyst for nanocarbon production from HDPE plastic waste. Int J Adv Sc Eng IT, 7: 552–558. https://doi.org/10.18517/ijaseit.7.2.2097

  5. Mishra N, Das G, Ansaldo A, Genovese A, Malerba M, Povia M, Ricci D, Fabrizio ED, Zitti ED, Sharon M, Sharon M (2012) Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J Anal Appl Pyro 94:91–98. https://doi.org/10.1016/j.jaap.2011.11.012

    Article  Google Scholar 

  6. Bajad GS, Vijayakumar RP, Gupta AG, Jagtap V, Singh YP (2017) Production of liquid hydrocarbons, carbon nanotubes and hydrogen rich gases from waste plastic in a multi-core reactor. J Anal Appl Pyro 125:83–90. https://doi.org/10.1016/j.jaap.2017.04.016

    Article  Google Scholar 

  7. Yang RX, Chuang KH, Wey MY (2016) Carbon nanotube and hydrogen production from waste plastic gasification over Ni/Al–SBA-15 catalysts: effect of aluminum content. RSC Adv 6:40731–40740. https://doi.org/10.1039/c6ra04546d

    Article  Google Scholar 

  8. Liu J, Jiang Z, Yu H, Tang T (2011) Catalytic pyrolysis of polypropylene to synthesize carbon nanotubes and hydrogen through a two-stage process. Pol Degrad Stab 96(10):1711–1719. https://doi.org/10.1016/j.polymdegradstab.2011.08.008

    Article  Google Scholar 

  9. Arena U, Mastellone ML, Camino G, Boccaleri E (2006) An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins. Pol Degrad Stab 91:763–768. https://doi.org/10.1016/j.polymdegradstab.2005.05.029

    Article  Google Scholar 

  10. Nath DCD, Sahajwalla V (2012) Analysis of carbon nanotubes produced by pyrolysis of composite film of poly (vinyl alcohol) and modified fly ash. Mater Sci Appl 3:103–109. https://doi.org/10.4236/msa.2012.32016

    Article  Google Scholar 

  11. Nersisyan HH, Lee TH, Lee KH, Maeng DY, Lee JH (2013) Fabrication of tunable carbon micro- and nanotubes using reed as bio-template. Mater Lett 107:79–82. https://doi.org/10.1016/j.matlet.2013.05.102

    Article  Google Scholar 

  12. Shi K, Yan J, Lester E, Wu T (2014) Catalyst-free synthesis of multiwalled carbon nanotubes via microwave-induced processing of biomass. Ind Eng Chem Res 53:15012–15019. https://doi.org/10.1021/ie503076n

    Article  Google Scholar 

  13. Saleh TA, Gupta VK (2011) Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J Col Int Sci 362:337–344. https://doi.org/10.1016/j.jcis.2011.06.081

    Article  Google Scholar 

  14. Xu Q, Huang QS, Luo TY, Wu RL, Wei W, Ni BJ (2021) Coagulation removal and photocatalytic degradation of microplastics in urban waters. Chem Eng J 416:129123. https://doi.org/10.1016/j.cej.2021.129123

    Article  Google Scholar 

  15. Samy M, Ibrahim MG, Alalm MG, Fujii M (2020) Effective photocatalytic degradation of sulfamethazine by CNTs/LaVO4 in suspension and dip coating modes. Sep Pur Tech 235:1–13. https://doi.org/10.1016/j.seppur.2019.116138

    Article  Google Scholar 

  16. Kassem AA, Abdelhamid HM, Fouad DM, Ibrahim SA (2020) Hydrogenation reduction of dyes using metal-organic framework-derived CuO@C. Micropor and Mesopor Mater 305:110340. https://doi.org/10.1016/j.micromeso.2020.110340

    Article  Google Scholar 

  17. Abdellah AR, Abdelhamid HN, El-Adasy ABAAM, Ahmed AA, Aly KI (2020) One-pot synthesis of hierarchical porous covalent organic frameworks and two-dimensional nanomaterials for selective removal of anionic dyes. J Env Chem Eng 8:104054. https://doi.org/10.1016/j.jece.2020.104054

    Article  Google Scholar 

  18. Etman AS, Abdelhamid HN, Yuan Y, Wang L, Zou X, Sun J (2018) Facile water-based strategy for synthesizing MoO3-x Nanosheets: efficient visible light photocatalysts for dye degradation. ACS Omega 3:2201–2209. https://doi.org/10.1021/acsomega.8b00012

    Article  Google Scholar 

  19. Chen ML, Oh WC (2010) The improved photocatalytic properties of methylene blue for V2O3/CNT/TiO2 composite under visible light. Int J Photoenergy 264831:1–5. https://doi.org/10.1155/2010/264831

    Article  Google Scholar 

  20. Wang Z, Yin L, Zhang M, Zhou G, Fei H, Shi H, Dai H (2013) Synthesis and characterization of Ag3PO4/multiwalled carbon nanotube composite photocatalyst with enhanced photocatalytic activity and stability under visible light. J Mater Sci 49:1585–1593. https://doi.org/10.1007/s10853-013-7841-4

    Article  Google Scholar 

  21. Ahmad M, Ahmed E, Hong ZL, Ahmed W, Elhissi A, Khalid NR (2014) Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composite photocatalysts. Ultrasonic Sonoch 21:761–773. https://doi.org/10.1016/j.ultsonch.2013.08.014

    Article  Google Scholar 

  22. Saravanakkumar D, Oualid HA, Brahmi Y, Ayeshamariam A, Karunanaithy M, Saleem AM, Kaviyarasu K, Sivaranjani S, Jayachandran M (2019) Synthesis and characterization of CuO/ZnO/CNTs thin films on copper substrate and its photocatalytic applications. Open Nano 100025:1–15. https://doi.org/10.1016/j.onano.2018.11.001

    Article  Google Scholar 

  23. An G, Ma W, Sun Z, Liu Z, Han B, Miao S, Miao Z, Ding K (2007) Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 45:1795–1801. https://doi.org/10.1016/j.carbon.2007.04.034

    Article  Google Scholar 

  24. Ghasemipour P, Fattahi M, Rasekh B, Yazdian F (2020) Developing the ternary ZnO doped MoS2 nanostructures grafted on CNT and reduced graphene oxide (RGO) for photocatalytic degradation of aniline. Sci Rep 10:1–16. https://doi.org/10.1038/s41598-020-61367-7

    Article  Google Scholar 

  25. Hayati F, Isari AA, Anvaripour B, Fattahi M, Kakavandi B (2020) Ultrasound-assisted photocatalytic degradation of sulfadiazine using MgO@CNT heterojunction composite: effective factors, pathway and biodegradability studies. Chem Eng J 381(122636):1–15. https://doi.org/10.1016/j.cej.2019.122636

    Article  Google Scholar 

  26. Parmon VN (1997) Photocatalysis as a phenomenon: aspects of terminology. Catal Today 39:137–144. https://doi.org/10.1016/S0920-5861(97)00095-3

    Article  Google Scholar 

  27. Haider AJ, Anbari RA, Sami HM, Haider MJ (2019) Photocatalytic nctivity of nickel oxide. J Mater Res Technol 8(3):2802–2808. https://doi.org/10.1016/j.jmrt.2019.02.018

    Article  Google Scholar 

  28. Viswanathan B (2018) Photocatalytic degradation of dyes: an overview. Cur Catal 7:1–25. https://doi.org/10.2174/2211544707666171219161846

    Article  Google Scholar 

  29. Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ (2008) p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. PNAS 105:2783–2787. https://doi.org/10.1073/pnas.0711990105

    Article  Google Scholar 

  30. Askari MB, Banizi ZT, Soltani S, Seifi M (2018) Comparison of optical properties and photocatalytic behavior of TiO2/MWCNT, CdS/MWCNT and TiO2/CdS/MWCNT nanocomposites. Optik 157:230–239. https://doi.org/10.1016/j.ijleo.2017.11.080

    Article  Google Scholar 

  31. Curry MDS (1982) Methemoglobinemia. Ann Emerg Med 11:214–221. https://doi.org/10.1016/S0196-0644(82)80502-7

    Article  Google Scholar 

  32. Peter C, Hongwan D, Kupfer A, Lauterburg BH (2000) Pharmacokinetics and organ distribution of intravenous and oral methylene blue. Eur J Clinic Pharmacol 56:247–250. https://doi.org/10.1007/s002280000124

    Article  Google Scholar 

  33. Begum R, Najeeb J, Sattar A, Naseem K, Irfan A, Sehemi AGA, Farooqi ZH (2019) Chemical reduction of methylene blue in the presence of nanocatalysts: a critical review. Rev Chem Eng 36(6):749–770. https://doi.org/10.1515/revce-2018-0047

    Article  Google Scholar 

  34. Emara MM, Farag RS, Mubarak MF, Ali SK (2020) Synthesis of core–shell activated carbon/CaO composite from Ficus Nitida leaves, as an efficient adsorbent for removal of methylene blue. Nanotech Env Eng 5(24):1–14. https://doi.org/10.1007/s41204-020-00088-8

    Article  Google Scholar 

  35. Senapati S, Shah A, Patra PK, Mahato M (2021) Measurement of elastic modulus of CNT composites: a nondestructive study. Ful, Nanotub, Carb Nanostr 11:1–7. https://doi.org/10.1080/1536383X.2021.1936506

    Article  Google Scholar 

  36. Barve AK, Gadegone SM, Lanjewar MR, Lanjewar RB (2014) Synthesis and characterization of nickel oxide based nanocomposite material. Int J Eng Res Appl ISSN 2248–9622(3):6–8

    Google Scholar 

  37. Mahato M, Gogoi M, Shah A, Mandal S (2021) The pyrolysis reactor apparatus and the process of MWCNT/H2 production using plastic waste. India Patent TEMP/E-1/20464/2021-KOL dt April 21, 2021.

  38. Lumens to lux calculator https://www.rapidtables.com/calc/light/lumen-to-lux-calculator.html Accessed on June 2, 2021

  39. Li G, Hou J, Zhang W, Li P, Liu G, Wang Y, Wang K (2020) Graphene-bridged WO3/MoS2 Z-scheme photocatalyst for enhanced photodegradation under visible light irradiation. Mater Chem Phys 246:1–9. https://doi.org/10.1016/j.matchemphys.2019.122021

    Article  Google Scholar 

  40. Rahdar A, Aliahmad M, Azizi Y (2015) NiO nanoparticles: synthesis and characterization. J Nanostr 5:145–151. https://doi.org/10.7508/JNS.2015.02.009

    Article  Google Scholar 

  41. George R, Kumar LA, Alagappan M (2019) Synthesis of nanotubular NiO-CNT composite and its application in temperature independent CO2 gas sensor fabricated using integrated Silver electrode. Digt J Nanomater a Biostr 14:213–224

    Google Scholar 

  42. Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Col Int Sci 260:89–94. https://doi.org/10.1016/S0021-9797(02)00176-5

    Article  Google Scholar 

  43. Davar F, Fereshteh Z, Niasari MS (2009) Nanoparticles Ni and NiO: Synthesis, characterization and magnetic properties. J All Comp 476:797–801. https://doi.org/10.1016/j.jallcom.2008.09.121

    Article  Google Scholar 

  44. Boschloo G, Hagfeldt A (2001) Spectroelectrochemistry of Nanostructured NiO. J Phys Chem B 105:3039–3044. https://doi.org/10.1021/jp003499s

    Article  Google Scholar 

  45. Kemary ME, Nagy N, Mehasseb IE (2013) Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semi Proc 16:1747–1752. https://doi.org/10.1016/j.mssp.2013.05.018

    Article  Google Scholar 

  46. Rakshit S, Ghosh S, Chall S, Mati SS, Moulik SP, Bhattacharya SC (2013) Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: a cost effective and ecofriendly approach. RSC Adv 3:19348–19356. https://doi.org/10.1039/C3ra42628a

    Article  Google Scholar 

  47. Amente C, Dharamvir K (2015) Purification and characterization of carbon nanotubes and the formation of magnetic semiconductors for the spintronic application. Sci Res 3(3):122–128. https://doi.org/10.11648/j.sr.20150303.22

    Article  Google Scholar 

  48. Srivastava N, Srivastava PC (2010) Realizing NiO nanocrystals from a simple chemical method. Bull Mater Sci 33:653–656. https://doi.org/10.1007/s12034-011-0142-0

    Article  Google Scholar 

  49. Qiao H, Wei Z, Yang H, Zhu L, Yan X (2009) Preparation and characterization of NiO nanoparticles by anodic arc plasma method. J Nano 2009:1–6. https://doi.org/10.1155/2009/795928

    Article  Google Scholar 

  50. Yan X, Tong X, Wang J, Gong C, Zhang M, Liang L (2014) Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application. J All Comp 593:184–189. https://doi.org/10.1016/j.jallcom.2014.01.036

    Article  Google Scholar 

  51. Mallick P, Sahoo CS (2013) Effect of CuO addition on the structural and optical properties of NiO nanoparticles. Nanosci Nanotech 3(3):52–55. https://doi.org/10.5923/j.nn.20130303.04

    Article  Google Scholar 

  52. Ramoraswi NO, Ndungu PG (2015) Photo-catalytic properties of TiO2 supported on MWCNTs, SBA-15 and Silica-coated MWCNTs nanocomposites. Nanosci Res Lett 427:1–17. https://doi.org/10.1186/s11671-015-1137-3

    Article  Google Scholar 

  53. Nath D, Singh F, Das R (2020) X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Mater Chem and Phys 239:1–9. https://doi.org/10.1016/j.matchemphys.2019.122021

    Article  Google Scholar 

  54. Zhu Y, Chu W, Wang N, Lin T, Yang W, Wen J, Zhao XS (2015) Self-assembled Ni/NiO/RGO heterostructures for high-performance supercapacitors. RSC Adv 5:77958–77964. https://doi.org/10.1039/c5ra14790e

    Article  Google Scholar 

  55. Singh KK, Chaudhary SK, Venugopal R, Gaurav A (2017) Bulk synthesis of multi-walled carbon nanotubes by AC arc discharge method. Proc Int Mech Eng Part N: J Nanoeng Nanosy 00:1–12. https://doi.org/10.1177/2397791417712836

    Article  Google Scholar 

  56. Ye A, Fan W, Zhang Q, Deng W, Wang Y (2012) CdS–graphene and CdS–CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catal Sci & Tech 2:969–978. https://doi.org/10.1039/C2CY20027A

    Article  Google Scholar 

  57. Zuo R, Du G, Zhang W, Liu L, Liu Y, Mei L, Li Z (2014) Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite. Adv Mater Sci Eng 170148:1–7. https://doi.org/10.1155/2014/170148

    Article  Google Scholar 

  58. Shanthi M, Kuzhalosai V (2012) Photocatalytic degradation of an azo dye, Acid Red 27, in aqueous solution using nano ZnO. Ind J Chem 51A:428–434.

    Google Scholar 

  59. Hubert G, Michael SR, Wallis CF, Emil TC, Igor VV, Michael PJ (2005) Photocatalytic degradation of methylene blue on nanocrystalline TiO2: Surface mass spectrometry of reaction intermediates. Int J Mas Spectr 245:61–67. https://doi.org/10.1016/j.ijms.2005.07.003

    Article  Google Scholar 

  60. Rauf MA, Meetani MA, Khaleel A, Ahmed A (2010) Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem Eng J 157:373–378. https://doi.org/10.1016/j.cej.2009.11.017

    Article  Google Scholar 

  61. Houas A, Ksibi LH, M, Elaloui E, Guillard C, Herrmann J M, (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B: Env 31:145–157. https://doi.org/10.1016/S0926-3373(00)00276-9

    Article  Google Scholar 

  62. Resende SF, Teodoro JAR, Binatti I, Gouveia RL, Oliveira BS, Augusti R (2017) On-surface photocatalytic degradation of methylene blue: In situ monitoring by paper spray ionization mass spectrometry. Int J Mas Spectr 418:107–111. https://doi.org/10.1016/j.ijms.2016.10.019

    Article  Google Scholar 

  63. Teng X, Li J, Wang Z, Wei Z, Chen C, Du K, Zhao C, Yang G, Li Y (2020) Performance and mechanism of methylene blue degradation by an electrochemical process. RSC Adv 10:24712–24720. https://doi.org/10.1039/d0ra03963b

    Article  Google Scholar 

  64. Khan J, Ilyas S, Akram B, Ahmad K, Hafeez M, Siddiq M, Ashraf MA (2018) Zno/NiO coated multi-walled carbon nanotubes for textile dyes degradation. Ar J Chem 11:880–896. https://doi.org/10.1016/j.arabjc.2017.12.020

    Article  Google Scholar 

  65. Motahari F, Mozdianfard MR, Soofivand F, Salavati-Niasari M (2014) NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv 4:27654–27660. https://doi.org/10.1039/c4ra02697g

    Article  Google Scholar 

  66. Hu X, Wang G, Wang J, Hu Z, Su Y (2020) Step-scheme NiO/BiOI heterojunction photocatalyst for rhodamine photodegradation. Appl Sur Sci 511:145499. https://doi.org/10.1016/j.apsusc.2020.145499

    Article  Google Scholar 

  67. Ahmed MA (2012) Synthesis and structural features of mesoporous NiO/TiO2 nanocomposites prepared by sol–gel method for photodegradation of methylene blue dye. J Photochem Photobiol A Chem 238:63–70. https://doi.org/10.1016/j.jphotochem.2012.04.010

    Article  Google Scholar 

  68. Hameed A, Gombac V, Montini T, Graziani M, Fornasiero P (2009) Synthesis, characterization and photocatalytic activity of NiO–Bi2O3 nanocomposites. Chem Phy Let 472:212–216. https://doi.org/10.1016/j.cplett.2009.03.017

    Article  Google Scholar 

  69. Rosaline DR, Inbanathan SSR, Suganthi A, Rajarajan M, Kavitha G, Srinivasan R, Hegazy HH, Ahmad UmarAlgarniManikandan HE (2020) Visible-light driven photocatalytic degradation of Eosin yellow (EY) dye based on NiO-WO3 Nanoparticles. J Nanosci Nanotech 20:924–933. https://doi.org/10.1166/jnn.2020.16898

    Article  Google Scholar 

  70. Xu Y, Xu H, Yan J, Li H, Huang L, Zhang Q, Huang C, Huilin Wan H (2013) A novel visible-light-response plasmonic photocatalyst CNT/Ag/AgBr and its photocatalytic properties. Phys Chem Chem Phys 15:5821–5830. https://doi.org/10.1039/c3cp44104k

    Article  Google Scholar 

  71. Xu Y, Xu H, Wang L, Yan J, Li H, Song Y, Huang L, Cai G (2013) The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity. Dalton Trans. 42:7604–7613. https://doi.org/10.1039/c3dt32871f

    Article  Google Scholar 

  72. Sapkota KP, Lee I, Hanif MA, Islam MA, Hahn JR (2019) Solar-light-driven efficient ZnO–single-walled carbon nanotube photocatalyst for the degradation of a persistent water pollutant organic dye. Catalysts 9:498. https://doi.org/10.3390/catal9060498

    Article  Google Scholar 

  73. Kuo CY (2009) Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process. J Haz Mater 163:239–244. https://doi.org/10.1016/j.jhazmat.2008.06.083

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge DST-SERB, Government of India, for financial support through SERB projects (No. EMR/2016/ 004219) sanctioned to Dr. Mrityunjoy Mahato. We also thank SAIF, NEHU, Shillong, for providing TEM Facilities. The Department of BSSS is acknowledged for UV–visible spectrophotometer. We thank the Department of Nanotechnology, NEHU, for XRD measurement and CDRI-Lucknow for ESI-MS facility.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the experimental concept. Material preparation and data collection were performed by Abhijit Nath. The data recording and analysis help was made by L Robindro Singh. The first draft of the manuscript was written by Abhijit Nath and finalized by Mrityunjoy Mahato. All authors commented on the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Mrityunjoy Mahato.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, A., Shah, A., Singh, L.R. et al. Waste plastic-derived NiO-MWCNT composite as visible light photocatalyst for degradation of methylene blue dye. Nanotechnol. Environ. Eng. 6, 70 (2021). https://doi.org/10.1007/s41204-021-00163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-021-00163-8

Keywords

Navigation