Skip to main content
Log in

Remarkable enhancement in the photocatalytic activity of porous CeO2 nanoparticles through nickel doping for wastewater treatment

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To enhance the structural and textural features of ceria (CeO2), a quick and easy auto combustion method was used to create porous ceria nanoparticles. Moreover, nickel ions were incorporated in the porous ceria nanoparticles with different contents (from 1 up to 10 wt%) by applying the same technique. Several characterisation techniques were used to characterize the produced samples, including XRD, DR UV-Vis, BET analysis, FTIR, SEM and HR-TEM. The results suggested that Ni ions were incorporated into the ceria framework and the average surface area of the entire samples is about 50 m2/g. More importantly, the produced materials’ light absorption property was observed to be red shifted towards the higher wavelength, and the calculated bandgap reduced from 3.01 to 2.4 eV for bare porous ceria and 10% Ni doped ceria, respectively. The fabricated samples were examined as a photocatalysts in the decolourizing reaction of methyl green dye (MG) as a model pollutant in industrial wastewater under artificial visible light illumination. The photocatalytic results showed that there is a remarkable increase in the photocatalytic activity by almost three times higher compared to bare porous ceria sample. Furthermore, the prepared Ni doped ceria sample exhibited good reusability, with partial deactivation, up to the fourth consecutive reaction without treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M.C. Arya, P.S. Bafila, D. Mishra, K. Negi, R. Kumar, A. Bughani, Adsorptive removal of Remazol Brilliant Blue R dye from its aqueous solution by activated charcoal of Thuja orientalis leaves: an eco-friendly approach. SN Appl. Sci. 2, 1–10 (2020)

    Google Scholar 

  2. M.M. Hassan, M.Z. Alam, M.N. Anwar, Biodegradation of textile azo dyes by bacteria isolated from dyeing industry effluent. Int. Res. J. Biol. Sci. 2(8), 27–31 (2013)

    Google Scholar 

  3. R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.G. Mahmoud, T. Elsamahy, J. Sun, A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 231, 113160 (2022)

    CAS  Google Scholar 

  4. F.S.A. Khan, N.M. Mubarak, Y.H. Tan, M. Khalid, R.R. Karri, R. Walvekar, S.A. Mazari, A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. J. Hazard. Mater. 413, 125375 (2021)

    CAS  Google Scholar 

  5. S.A. Ali, T. Ahmad, Treasure trove for efficient hydrogen evolution through water splitting using diverse perovskite photocatalysts. Mater. Today Chem. 29, 101387 (2023)

    CAS  Google Scholar 

  6. F. Damiri, S. Andra, N. Kommineni, S.K. Balu, R. Bulusu, A.A. Boseila, S. Cavalu, Recent advances in adsorptive nanocomposite membranes for heavy metals ion removal from contaminated water: a comprehensive review. Materials. 15(15), 5392 (2022)

    CAS  Google Scholar 

  7. A.S. Patil, A.V. Patil, C.G. Dighavkar, V.A. Adole, U.J. Tupe, Synthesis techniques and applications of rare earth metal oxides semiconductors: a review. Chem. Phys. Lett. (2022). https://doi.org/10.1016/j.cplett.2022.139555

    Article  Google Scholar 

  8. G. Varvoutis, M. Lykaki, G.E. Marnellos, M. Konsolakis, Recent advances on fine-tuning engineering strategies of CeO2-Based nanostructured catalysts exemplified by CO2 hydrogenation processes. Catalysts. 13(2), 275 (2023)

    CAS  Google Scholar 

  9. E. Kusmierek, A CeO2 semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: a review. Catalysts. 10(12), 1435 (2020)

    CAS  Google Scholar 

  10. H. Yan, N. Zhang, D. Wang, Highly efficient CeO2-supported noble-metal catalysts: from single atoms to nanoclusters. Chem Catal. (2022). https://doi.org/10.1016/j.checat.2022.05.001

    Article  Google Scholar 

  11. N.M. Devi, N.K. Singh, Enhanced light detection by annealed vertically aligned CeO2 nanorods. Mater. Res. Bull. 117, 103–112 (2019)

    CAS  Google Scholar 

  12. N.A. Pandit, T. Ahmad, ZrO2/CeO2-heterostructured nanocomposites for enhanced carbon monoxide gas sensing. ACS Appl. Nano Mater. 6(9), 7299–7309 (2023)

    CAS  Google Scholar 

  13. M.R. Silva, M.F. Alves, J.P. Cunha, J.L. Costa, C.A. Silva, M.H. Fernandes, P. Ferreira, Nanostructured transparent solutions for UV-shielding: recent developments and future challenges. Mater. Today Phys. (2023). https://doi.org/10.1016/j.mtphys.2023.101131

    Article  Google Scholar 

  14. M. Sagir, M.B. Tahir, J. Akram, M.S. Tahir, U. Waheed, Nanoparticles and significance of photocatalytic nanoparticles in wastewater treatment: a review. Curr. Anal. Chem. 17(1), 38–48 (2021)

    CAS  Google Scholar 

  15. E. Cerrato, G.A. Zickler, M.C. Paganini, The role of Yb doped ZnO in the charge transfer process and stabilization. J. Alloys Compd. 816, 152555 (2020)

    CAS  Google Scholar 

  16. W. Zhou, H. Fu, Defect-mediated electron–hole separation in semiconductor photocatalysis. Inorg. Chem. Front. 5(6), 1240–1254 (2018)

    CAS  Google Scholar 

  17. P. Nithya, M. Sundrarajan, Ionic liquid functionalized biogenic synthesis of AgAu bimetal doped CeO2 nanoparticles from Justicia adhatoda for pharmaceutical applications: antibacterial and anti-cancer activities. J. Photochem. Photobiol., B 202, 111706 (2020)

    CAS  Google Scholar 

  18. M.M. Khan, R. Siwach, S. Kumar, M. Ahamed, J. Ahmed, Frequency and temperature dependence of dielectric permittivity/electric modulus, and efficient photocatalytic action of Fe-doped CeO2 NPs. J. Alloys Compd. 856, 158127 (2021)

    Google Scholar 

  19. M.A. Majeed Khan, W. Khan, M. Naziruddin Khan, A.N. Alhazaa, Enhanced visible light-driven photocatalytic performance of Zr doped CeO 2 nanoparticles. J. Mater. Sci.: Mater. Electron. 30, 8291–8300 (2019)

    CAS  Google Scholar 

  20. M.M. Khan, W. Khan, M. Ahamed, A.N. Alhazaa, Microstructural properties and enhanced photocatalytic performance of Zn doped CeO2 nanocrystals. Sci. Rep. 7(1), 12560 (2017)

    Google Scholar 

  21. B. Zheng, J. Fan, B. Chen, X. Qin, J. Wang, F. Wang, X. Liu, Rare-earth doping in nanostructured inorganic materials. Chem. Rev. 122(6), 5519–5603 (2022)

    CAS  Google Scholar 

  22. B. Sharma, U. Soni, L.O. Afonso, D.M. Cahill, Nanomaterial doping: chemistry and strategies for agricultural applications. ACS Agri. Sci. Technol. 2(2), 240–257 (2022)

    CAS  Google Scholar 

  23. M.M. Khan, P. Nain, J. Ahmed, M. Ahamed, S. Kumar, Characterization and photocatalytic performance of hydrothermally synthesized Cu-doped TiO2 NPs. Opt. Mater. 133, 112983 (2022)

    CAS  Google Scholar 

  24. S. Kumar, S.Y. AlOmar, K. Kumari, F. Albalawi, R. Kumar, F. Ahmed, P. Ahmad Alvi, Structural, optical, electrical and antibacterial properties of Fe-Doped CeO2 nanoparticles. Crystals 11(12), 1594 (2021)

    CAS  Google Scholar 

  25. L. Yue, X.M. Zhang, Structural characterization and photocatalytic behaviors of doped CeO2 nanoparticles. J. Alloys Compd. 475, 702–705 (2009)

    CAS  Google Scholar 

  26. S.N. Matussin, F. Khan, M.H. Harunsani, Y.M. Kim, M.M. Khan, Visible-light-induced photocatalytic and photoantibacterial activities of Co-doped CeO2. ACS Omega (2023). https://doi.org/10.1021/acsomega.2c07058

    Article  Google Scholar 

  27. A.D. Liyanage, S.D. Perera, K. Tan, Y. Chabal, K.J. Balkus, Synthesis, characterisation and photocatalytic activity of Y-doped CeO2 nanorods. ACS Catal. 4, 577–584 (2014)

    CAS  Google Scholar 

  28. A.A. Fauzi, A.A. Jalil, N.S. Hassan, F.F.A. Aziz, M.S. Azami, I. Hussain, D.V. Vo, A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant. Chemosphere. 286, 131651 (2022)

    CAS  Google Scholar 

  29. T.R. Sahoo, M. Armandi, R. Arletti, M. Piumetti, S. Bensaid, M. Manzoli, B. Bonelli, Pure and Fe-doped CeO2 nanoparticles obtained by microwave assisted combustion synthesis: Physico-chemical properties ruling their catalytic activity towards CO oxidation and soot combustion. Appl. Catal. B 211, 31–45 (2017)

    CAS  Google Scholar 

  30. S. Sultana, S. Mansingh, K.M. Parida, Crystal facet and surface defect engineered low dimensional CeO 2 (0D, 1D, 2D) based photocatalytic materials towards energy generation and pollution abatement. Mater. Adv. 2(21), 6942–6983 (2021)

    CAS  Google Scholar 

  31. V. Vinothkumar, C. Koventhan, S.M. Chen, Facile one-step synthesis of Ni@ CeO2 nanoparticles towards high performance voltammetric sensing of antipsychotic drug trifluoperazine. J. Alloys Compd. 882, 160682 (2021)

    CAS  Google Scholar 

  32. A. Kumar, E.E. Wolf, A.S. Mukasyan, Solution combustion synthesis of metal nanopowders: nickel—reaction pathways. AIChE J. 57(8), 2207–2214 (2011)

    CAS  Google Scholar 

  33. J. Malleshappa, H. Nagabhushana, B.D. Prasad, S.C. Sharma, Y.S. Vidya, K.S. Anantharaju, Structural, photoluminescence and thermoluminescence properties of CeO2 nanoparticles. Optik. 127(2), 855–861 (2016)

    CAS  Google Scholar 

  34. E.T. Anthony, M.O. Ojemaye, A.I. Okoh, O. Okoh, Synthesis of CeO2 as promising adsorbent for the management of free-DNA harboring antibiotic resistance genes from tap-water. Chem. Eng. J. 401, 125562 (2020)

    CAS  Google Scholar 

  35. A.A. Atran, F.A. Ibrahim, N.S. Awwad, M. Shkir, M.S. Hamdy, Facial one-pot synthesis, characterization, and photocatalytic performance of Porous Ceria. Catalysts. 13(2), 240 (2023)

    CAS  Google Scholar 

  36. A.A. Atran, M.S. Hamdy, Improving the Photocatalytic performance of porous ceria under visible light illumination via Mn incorporation. Catalyst. 13(3), 523 (2023)

    CAS  Google Scholar 

  37. K. Mužina, S. Kurajica, G. Dražić, P. Guggenberger, G. Matijašić, True doping levels in hydrothermally derived copper-doped ceria. J. Nanopart. Res. 23, 1–14 (2021)

    Google Scholar 

  38. R. Zamiri, S.A. Salehizadeh, H.A. Ahangar, M. Shabani, A. Rebelo, J.M. Ferreira, Dielectric and optical properties of Ni-and Fe-doped CeO2 nanoparticles. Appl. Phys. A 125, 1–7 (2019)

    CAS  Google Scholar 

  39. K.K. Babitha, A. Sreedevi, K.P. Priyanka, B. Sabu, Structural characterization and optical studies of CeO2 nanoparticles synthesized by chemical precipitation. Indian J. Pure Appl. Phys. 53, 596–603 (2015)

    Google Scholar 

  40. M.S. Hamdy, K.V. Chandekar, M. Shkir, S. AlFaify, E.H. Ibrahim, Z. Ahmad, K.S. Al-Namshah, Novel Mg@ ZnO nanoparticles synthesized by facile one-step combustion route for anti-microbial, cytotoxicity and photocatalysis applications. J. Nanostructure Chem. 11, 147–163 (2021)

    CAS  Google Scholar 

  41. S.R. Ali, R. Kumar, S.K. Kadabinakatti, M.C. Arya, Enhanced UV and visible light-driven photocatalytic degradation of tartrazine by nickel-doped cerium oxide nanoparticles. Mater. Res. Express 6(2), 025513 (2018)

    Google Scholar 

  42. V. Ramasamy, V. Mohana, G. Suresh, Study of Ni: CeO2 nanoparticles for efficient photodegradation of methylene blue by sun light irradiation. Indian J. Phys. 92, 1601–1612 (2018)

    CAS  Google Scholar 

  43. S. Kumar, A.K. Ojha, Ni, Co and Ni–Co codoping induced modification in shape, optical band gap and enhanced photocatalytic activity of CeO2 nanostructures for photodegradation of methylene blue dye under visible light irradiation. RSC Adv. 6(11), 8651–8660 (2016)

    CAS  Google Scholar 

  44. L. Cui, Y. Tang, H. Zhang, L.G. Hector, C. Ouyang, S. Shi, L. Chen, First-principles investigation of transition metal atom M (M = cu, ag, au) adsorption on CeO2 (110). Phys. Chem. Chem. Phys. 14(6), 1923–1933 (2012)

    CAS  Google Scholar 

  45. N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, B. Inceesungvorn, Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. J. Colloid Interface Sci. 417, 402–409 (2014)

    CAS  Google Scholar 

  46. P.R. Gardner, I. Fridovich, Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J. Biol. Chem. 267(13), 8757–8763 (1992)

    CAS  Google Scholar 

  47. M. Nasir, Understanding the structure-magnetic properties correlation in transition metal oxides and rare-earth-based double perovskites. Ph.D. dissertation, Indian Institute of Technology Indore, India, (2019)

  48. D. Maarisetty, S. Mahanta, A.K. Sahoo, P. Mohapatra, S.S. Baral, Steering the charge kinetics in dual-functional photocatalysis by surface dipole moments and band edge modulation: a defect study in TiO2-ZnS-rGO composites. ACS Appl. Mater. Interfaces. 12(10), 11679–11692 (2020)

    CAS  Google Scholar 

  49. Y. Zhou, Z. Wang, L. Huang, S. Zaman, K. Lei, T. Yue, B.Y. Xia, Engineering 2D photocatalysts toward carbon dioxide reduction. Adv. Energy Mater. 11(8), 2003159 (2021)

    CAS  Google Scholar 

  50. Z. Shao, D. Zhang, H. Li, C. Su, X. Pu, Y. Geng, Fabrication of MIL-88A/g-C3N4 direct Z-scheme heterojunction with enhanced visible-light photocatalytic activity. Sep. Purif. Technol. 220, 16–24 (2019)

    CAS  Google Scholar 

  51. D. Wang, J. Li, Z. Xu, Y. Zhu, G. Chen, Z. Cui, Synthesis of gC 3 N 4/NiO p–n heterojunction materials with ball-flower morphology and enhanced photocatalytic performance for the removal of tetracycline and Cr6+. J. Mater. Sci. 54, 11417–11434 (2019)

    CAS  Google Scholar 

  52. K.S. Al-Namshah, M. Shkir, F.A. Ibrahim, M.S. Hamdy, Auto combustion synthesis and characterization of Co doped ZnO nanoparticles with boosted photocatalytic performance. Phys. B: Condens. Matter. 625, 413459 (2022)

    CAS  Google Scholar 

  53. T.M. Bawazeer, M.S. Alsoufi, M. Shkir, B.M. Al-Shehri, M.S. Hamdy, Excellent improvement in photocatalytic nature of ZnO nanoparticles via Fe doping content. Inorg. Chem. Commun. 130, 108668 (2021)

    CAS  Google Scholar 

  54. M. Ismael, Structure, properties, and characterization of mullite-type materials Bi2M4O9 and their applications in photocatalysis: a review. J. Environ. Chem. Eng. (2022). https://doi.org/10.1016/j.jece.2022.108640

    Article  Google Scholar 

  55. P. Li, M. Zhang, X. Li, C. Wang, R. Wang, B. Wang, H. Yan, MOF-derived NiO/CeO 2 heterojunction: a photocatalyst for degrading pollutants and hydrogen evolution. J. Mater. Sci. 55, 15930–15944 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Ministry of Education in KSA for funding this research through project number KKU-IFP2-P-6.

Funding

The current research was funded from the Ministry of Education in Saudi Arabia through project number KKU-IFP2-P-6.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [AAA], [FAI], [NSA], and [HMSA-R]. The first draft of the manuscript was written by [MSH] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohamed S. Hamdy.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atran, A.A., Ibrahim, F.A., Awwad, N.S. et al. Remarkable enhancement in the photocatalytic activity of porous CeO2 nanoparticles through nickel doping for wastewater treatment. J Mater Sci: Mater Electron 34, 2082 (2023). https://doi.org/10.1007/s10854-023-11554-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11554-9

Navigation