Skip to main content
Log in

Dielectric, magnetic, and structural investigation of Cr substituted cobalt nanoferrite via auto-combustion

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferrite with the formula CoCrxFe2−xO4 (x = 0.05, 0.10, 0.15, and 0.20) (CCF) prepared by sol–gel process were studied. The structural, morphological, magnetic properties, and di-electric behavior of the specimens were understood by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Energy-dispersive X-ray (EDX) spectroscopy, Field electron scanning microscopy (FE-SEM), vibrating sample magnetometer (VSM), and impedance analyzer. The lattice parameter declines from 8.383 to 8.342 Å. The substitution of the larger Fe3+ ion (0.73 Å) by the smaller Cr3+ ionic radious (0.68 Å). In SEM the porosity in ferrite powders may have developed as a result of the fabrication that emits gases. The results of the FE-SEM picture indicate some agglomerated spherical and polyhedral form architecture with modest grain sizes in the range of (65.30–90.22 nm).The produced nanoferrite powders change from hard magnetic materials to soft magnetic ones when the magnetic characteristics are improved and hysteresis loop get narrowers. Hc drops off from 991 to 396 Oe, due to deformity in the samples. At room temperature, the impedance analyzer was used to study the dielectric factors such as the dielectric constant, dielectric loss, and ac conductivity for all specimens in terms of frequency. It is evident from plots of the dielectric constant (εʹ) and tan (δ) vs ln (f) that εʹ and tan δ decreases at low frequency from 102 to 104 Hz areas explained by Maxwell–Wagner interfacial polarization and remains steady at high frequency values. The results of this study are critically significant and will have a significant impact on future developments in magnetic recording equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings are available within paper and supplementary information files not available.

References

  1. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Smart Mater. Struct. 18(115028), 1–7 (2009)

    Google Scholar 

  2. R. Panda, R. Muduli, G. Jayarao, D. Sanyal, D. Behera, J. Alloys Compd. 669, 19–28 (2016)

    Article  CAS  Google Scholar 

  3. I. Gul, W. Ahmed, A. Maqsood, J. Magn. Magn. Mater. 320(3–4), 270–275 (2008)

    Article  CAS  Google Scholar 

  4. S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mol. Liq. 216, 545–551 (2016)

    Article  CAS  Google Scholar 

  5. R. Jayalakshmi, J. Jeyanthi, K.R.A. Sidhaarth, Environ. Nanotechnol. Monit. Manag. 17, 100659 (2022)

    CAS  Google Scholar 

  6. S. Zinatloo-Ajabshir, M. Sadat Morassaei, M. Salavati-Niasari, Composites B 167, 643–653 (2019)

    Article  CAS  Google Scholar 

  7. S. Zinatloo-Ajabshir, E. Shafaati, A. Bahrami, Ceram. Int. 48(17), 24695–24705 (2022)

    Article  CAS  Google Scholar 

  8. J.A. Paulsen, A.P. Ring, C.C.H. Lo, J.E. Snyder, D.C. Jiles, J. Appl. Phys. 97, 4 (2005)

    Article  Google Scholar 

  9. K.P. Chae, J. Lee, H.S. Kweon, Y.B. Lee, J. Magn. Magn. Mater. 283, 103 (2004)

    Article  CAS  Google Scholar 

  10. F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Chem. Eng. J. 279, 605–614 (2015)

    Article  CAS  Google Scholar 

  11. S. Sharma, N.D. Sharma, N. Choudhary, M.K. Verma, D. Singh, Ceram. Int. 43, 13401–13410 (2017)

    Article  CAS  Google Scholar 

  12. A.I. Borhan, A.R. Iordan, M.N. Palamaru, Mater. Res. Bull. 48, 2549–2556 (2013)

    Article  CAS  Google Scholar 

  13. S. Zinatloo-Ajabshir, S. Heidari-Asil, M. Salavati-Niasari, Sep. Purif. Technol. 280, 119841 (2022)

    Article  CAS  Google Scholar 

  14. S.G.C. Fonsecaa, L.S. Neivab, M.A.R. Bonifacioc, P.R.C. Santosa, U.C. Silva, J.B.L. de Oliveiraa, Mater. Res. 21(3), 861 (2018)

    Article  Google Scholar 

  15. M.S. Hossain, M.B. Alam, M. Shahjahan, M.H.A. Begum, M.M. Hossain, S. Islam, N. Khatun, M. Hossain, M.S. Alamy, M. Al-Mamun, J. Adv. Dielect. 8(4), 1850030 (2018)

    Article  CAS  Google Scholar 

  16. K.S. Rao, G.S.V.R.K. Choudary, K.H. Rao, Ch. Sujatha, Proc. Mater. Sci. 10, 19–27 (2015)

    Article  CAS  Google Scholar 

  17. T. Slatineanu, A.R. Iordan, V. Oancea, M.N. Palamaru, I. Dumitru, C. Petrica Constantin, O.F. Caltun, Mater. Sci. Eng. B 178(16), 1040–1047 (2013)

    Article  CAS  Google Scholar 

  18. S.S. Jadhav, S.M. Patang, K.M. Jadhav, J. Biomed. Bioeng. 1(1), 21–29 (2010)

    CAS  Google Scholar 

  19. A.K. Sijo, D.P. Dutta, M. Roy, Ceram. Int. 43, 16915–16918 (2017)

    Article  CAS  Google Scholar 

  20. G.R. Dube, V.S. Darshane, J. Mol. Catal. 79, 285 (1993)

    Article  CAS  Google Scholar 

  21. M. Raghasudha, D. Ravinder, P. Veerasomaiah, Adv. Mater. Phys. Chem. 3(2), 89–96 (2013)

    Article  Google Scholar 

  22. M. George, S.S. Nair, K. Malini, P. Joy, M. Anantharaman, J. Phys. D 40(6), 1593 (2007)

    Article  CAS  Google Scholar 

  23. M. Sangmanee, S. Maensiri, Appl. Phys. A 97(1), 167–177 (2009)

    Article  CAS  Google Scholar 

  24. P. Hankare, V. Vader, N. Patil, S. Jadhav, U. Sankpal, M. Kadam, B. Chougule, N. Gajbhiye, Mater. Chem. Phys. 113(1), 233–238 (2009)

    Article  CAS  Google Scholar 

  25. L.Z. Li, T.X. Qiang, R. Wang, L. Peng, J. Magn. Magn. Mater. 381, 328–331 (2015)

    Article  CAS  Google Scholar 

  26. Y. Koseoglu, A. Baykal, M.S. Toprak, F. Gozuak, A.C. Basaran, B. Aktas, J. Compd. Alloys 462, 209–213 (2008)

    Article  Google Scholar 

  27. N. Kasapoglu, B. Birsoz, A. Baykal, Y. Koseoglu, M.S. Toprak, Cent. Euro. J. Chem. 5(2), 570–580 (2007)

    CAS  Google Scholar 

  28. S. Xavier, V. George, A. Jose, K.M.R. Krishna, V.C. Jonis, Int. J. Eng. Sci. Inn. Tech. 6, 1 (2017)

    Google Scholar 

  29. P.P. Hankare, V.T. Vader, N.M. Patil, S.D. Jadhav, U.B. Sankpal, M.R. Kadam, B.K. Chougule, N.S. Gajbhiye, Mater. Chem. Phys. 113, 233–238 (2009)

    Article  CAS  Google Scholar 

  30. K.M. Batoo, S. Kumar, C.G. Lee, Alimuddin, J. Alloys Compd. 480, 596 (2009)

    Article  CAS  Google Scholar 

  31. M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, A. Bozkurt, M.S. Toprak, J. Alloys Compd. 486, 325–329 (2009)

    Article  CAS  Google Scholar 

  32. M.T. Rahman, M. Varga, C.V. Ramana, J. Alloys Compd. 617, 547–562 (2014)

    Article  CAS  Google Scholar 

  33. D. Ravinder, Mater. Lett. 40, 205–208 (1999)

    Article  CAS  Google Scholar 

  34. C.C. Hwang, J.S. Tsai, T.H. Huang, C.H. Peng, S.Y. Chen, J. Solid State 178, 382–389 (2005)

    Article  CAS  Google Scholar 

  35. C.H. Jung, S. Jalota, S.B. Bhaduri, Mater. Lett. 59, 2426–2432 (2005)

    Article  CAS  Google Scholar 

  36. S. Gowreesan, A.R. Kumar, J. Mater. Sci. 28(6), 4553–4564 (2017)

    CAS  Google Scholar 

  37. T. Saragi, S. Nurjannah, R. Novia, N. Syakir, E. Simanjuntak, L. Safriani, Risdiana, A. Bahtiar, Mater. Sci. Forum 827, 219–222 (2015)

    Article  Google Scholar 

  38. W. Zhang, A. Sun, X. Zhao, N. Suo, L. Yu, Z. Zuo, J. Sol-Gel Sci. Technol. 90, 599–610 (2019)

    Article  CAS  Google Scholar 

  39. N. Lenin, K. Sakthipandi, R. Rajesh Kanna, G. Rajkumar, Ceram. Int. 44(17), 21866–21873 (2018)

    Article  CAS  Google Scholar 

  40. R.R. Kanna, K. Sakthipandi, N. Lenin, E.J. Jebaseelan Samuel, J. Mater. Sci. 30, 4473–4486 (2019)

    CAS  Google Scholar 

  41. M.G. Naseri, E.B. Saion, H.A. Ahangar, A.H. Shaari, Mater. Res. Bull. 48(4), 1439–1446 (2013)

    Article  CAS  Google Scholar 

  42. A.A. Birajdar, S.E. Shirsath, R.H. Kadam, S.M. Patange, D.R. Mane, A.R. Shitre, Ceram. Int. 38, 2963–2970 (2012)

    Article  Google Scholar 

  43. L. Neel, Ann. Phys. 3, 137 (1948)

    Article  CAS  Google Scholar 

  44. S.F. Mansour, A. Dawood, M.A. Abdo, J. Mater. Sci. 30, 17262–17275 (2019)

    CAS  Google Scholar 

  45. D.E. Yildiz, I. Dokme, J. Appl. Phys. 110, 014507 (2011)

    Article  CAS  Google Scholar 

  46. E. Melagiriyappa, H.S. Jayanna, B.K. Chougule, J. Mater. Chem. Phys. 112, 68–73 (2008)

    Article  CAS  Google Scholar 

  47. R.H. Kodama, A.E. Berkowitz, J.E. McNiff, S. Foner, Phys. Rev. Lett. 77, 394 (1996)

    Article  CAS  Google Scholar 

  48. I.H. Gul, A.Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, J. Magn. Magn. Mater. 311(2), 494–499 (2007)

    Article  CAS  Google Scholar 

  49. R.R. Kannaa, K. Sakthipandib, A.S. Kumar, N.R. Dhineshbabud, S.M. Seeni Mohamed Aliar Maraikkayare, A.S. Afrozea, R.B. Jotaniaf, M. Sivabharathy, Ceram. Int. 46(9), 13695–13703 (2020)

    Article  Google Scholar 

  50. J.S. Ghodake, R.C. Kambale, S.V. Salvi, S.R. Sawant, S.S. Suryavanshi, J. Alloys Compd. 486, 830–834 (2009)

    Article  CAS  Google Scholar 

  51. K.M. Batoo, S. Kumar, C.G. Lee, Alimuddin, Curr. Appl. Phys. 9, 826–832 (2009)

    Article  Google Scholar 

  52. K. Iwauchi, J. Appl. Phys. 10, 1520 (1971)

    Article  CAS  Google Scholar 

  53. M.T. Rahman, M. Vargas, C. Ramana, J. Alloys Compd. 617, 547–562 (2014)

    Article  CAS  Google Scholar 

  54. M.G. Chourashiya, J.Y. Patil, S.H. Pawar, L.D. Jadhav, Mater. Chem. Phy. 109, 39 (2008)

    Article  CAS  Google Scholar 

  55. E. Pervaiz, I.H. Gul, J. Magn. Magn. Mater. 324, 3695–3703 (2012)

    Article  CAS  Google Scholar 

  56. K. Verma, A. Kumar, D. Varshney, J. Alloys Compd. 526, 91–97 (2012)

    Article  CAS  Google Scholar 

  57. A.M. Mohammad, S.M. Ali Ridha, T.H. Mubarak, Int. J. Appl. Eng. Res. 12(8), 6026–6035 (2018)

    Google Scholar 

  58. G. Raju, N. Murali, M.S.N.A. Prasad, B. Suresh, D.A. Babu, M.G. Kiran, A. Ramakrishna, M.T. Wegayehu, B.K. Babu, Mater. Sci. Energy Technol. 2, 78–82 (2019)

    Google Scholar 

  59. B.G. Toksha, S.E. Shirsath, M.L. Mane, S.M. Patange, S.S. Jadhav, K.M. Jadhav, J. Phys. Chem. C 115(43), 20905–20912 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sai Lab Patiala, MNIT Jaipur, IIT Roorkie, IIT Madras are gratefully acknowledged for providing characterization facilities to our prepared samples.

Funding

This work was supported by Chaudhary Devi Lal University, Sirsa (Hry.) India by providing lab facility to Harpreet Kaur under the supervision of Dharamvir Singh Ahlawat.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the investigation design and conception. Material preparation, data collection and first draft were performed by HK and DSA. Analysis and discussion contributed by HK, DSA, AS, AKT. All authors read, improved and approved the final manuscript.

Corresponding author

Correspondence to Dharamvir Singh Ahlawat.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Tyagi, A.K., Singh, A. et al. Dielectric, magnetic, and structural investigation of Cr substituted cobalt nanoferrite via auto-combustion. J Mater Sci: Mater Electron 34, 2143 (2023). https://doi.org/10.1007/s10854-023-11538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11538-9

Navigation