Skip to main content
Log in

Size-dependent structural, morphological, optical, and electrical studies of hydrothermally synthesized TiO2 nanocorals for DSSC application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we report the titanium dioxide (TiO2) nanocorals made by a hydrothermal method with various reaction times (24 h, 48 h, and 72 h) at 160 °C. The structural analysis evidenced the existence of sharp intense peaks showing that the samples have a well-crystalline nature in prepared TiO2 nanocorals, as confirmed by PXRD patterns. Moreover, the UV absorption spectrum has been used to analyse the optical absorption, cut-off wavelength (∼ 350 nm) and calculated the direct optical bandgap (Eg), which has found to be 3.23, 3.31, and 3.42 eV by Tauc relation with the straight-line slop method (αhγ)2 = 0. The FE-SEM images show the formation of TiO2 film nanocoral with morphologies due to the effect of increasing the reaction times. Additionally, the EDS spectrum confirmed the presence of the chemical compounds. The surface characteristics of the samples have been investigated at atomic and molecular levels using AFM microscopic analyser. The conversion efficiency of (TiO2-N719 dye) DSSCs has increased by doping with varying reaction times from 4.51 to 5.85% because of increasing reaction time the surface morphology of the particle size decreases due to the effect of dye molecules absorbed and superior light scattering capability for boosting the light harvesting efficiency. The results of electrochemical impedance spectroscopy of DSSCs also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the finding of this study are available within the article. Raw data that support the finding of this study are available from the corresponding author upon reasonable request.

References

  1. D. Kishore Kumar, J. Kříž, N. Bennett, B. Chen, H. Upadhayaya, K.R. Reddy, V. Sadhu, Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): a review. Mater. Sci. Energy Technol. 3, 472 (2020). https://doi.org/10.1016/j.mset.2020.03.003

    Article  CAS  Google Scholar 

  2. T. Ahmad, D. Zhang, A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep. 6, 1973 (2020). https://doi.org/10.1016/j.egyr.2020.07.020

    Article  Google Scholar 

  3. J.E. Ikpesu, S.E. Iyuke, M. Daramola, A.O. Okewale, Synthesis of improved dye-sensitized solar cell for renewable energy power generation. Sol. Energy. 206, 918 (2020). https://doi.org/10.1016/j.solener.2020.05.002

    Article  CAS  Google Scholar 

  4. S.B. Wategaonkar, V.G. Parale, R.P. Pawar, S.S. Mali, C.K. Hong, R.R. Powar, A.V. Moholkar, H.H. Park, B.M. Sargar, R.K. Mane, Structural, morphological, and optical studies of hydrothermally synthesized Nb-added TiO2 for DSSC application. Ceram. Int. 47(18), 25580 (2021). https://doi.org/10.1016/j.ceramint.2021.05.284

    Article  CAS  Google Scholar 

  5. S. Mehra, S. Bishnoi, A. Jaiswal, M. Jagadeeswararao, A.K. Srivastava, S.N. Sharma, P. Vashishtha, A review on spectral converting nanomaterials as a photoanode layer in dye-sensitized solar cells with implementation in energy storage devices. Energy Storage. 2(2), 1 (2020). https://doi.org/10.1002/est2.120

    Article  CAS  Google Scholar 

  6. A. Gopalraman, S. Karuppuchamy, S. Vijayaraghavan, High efficiency dye-sensitized solar cells with VOC–JSC trade off eradication by interfacial engineering of the photoanode|electrolyte interface. RSC Adv. 9(69), 40292 (2019). https://doi.org/10.1039/C9RA08278F

    Article  CAS  Google Scholar 

  7. M.N. Mustafa, Y. Sulaiman, Y. Fully, Flexible dye-sensitized solar cells photoanode modified with titanium dioxide-graphene quantum dot light scattering layer. Sol. Energy. 212, 332 (2020). https://doi.org/10.1016/j.solener.2020.11.001

    Article  CAS  Google Scholar 

  8. N. Kaur, A. Mahajan, V. Bhullar, D.P. Singh, V. Saxena, V.A.K. Debnath, D.K. Aswal, D. Devi, F. Singh, S. Chopra, Fabrication of plasmonic dye-sensitized solar cells using ion-implanted photoanodes. RSC Adv. 9(35), 20375 (2019). https://doi.org/10.1039/C9RA02657

    Article  CAS  Google Scholar 

  9. N. Ruba, P. Prakash, S. Sowmya, B. Janarthana, A.N. Prabu, J. Chandrasekaran, T. Alshahrani, H.Y. Zahran, I.S. Yahia, Recent advancement in photo-anode, dye and counter cathode in dye-sensitized solar cell: a review. J. Inorg. Organomet. Polym. Mater. 31(5), 1894 (2021). https://doi.org/10.1007/s10904-020-01854-6

    Article  CAS  Google Scholar 

  10. M.N. Mustafa, Y. Sulaiman, Optimization of titanium dioxide decorated by graphene quantum dot as a light scatterer for enhanced dye-sensitized. Solar cell. Performance J. Electroanal. Chem. 876, 114516 (2020). https://doi.org/10.1016/j.jelechem.2020.114516

    Article  CAS  Google Scholar 

  11. N.D. Desai, K.V. Khot, T. Dongale, K.P. Musselman, P.N. Bhosale, Development of dye sensitized TiO2 thin films for efficient energy harvesting. J. Alloys Compd. 790, 1001 (2019). https://doi.org/10.1016/j.jallcom.2019.03.246

    Article  CAS  Google Scholar 

  12. C. Yu, J. Zhang, H. Yang, L. Zhang, Y. Gao, Enhanced photovoltaic conversion efficiency of a dye-sensitized solar cell based on TiO2 nanoparticle/nanorod array composites. J. Mater. Res. 34(07), 1155 (2019). https://doi.org/10.1557/jmr.2018.420

    Article  CAS  Google Scholar 

  13. P. Makal, P, and, D. Das, Graphitic carbon nitride (g-C3N4) incorporated TiO2–B nanowires as efficient photoanode material in dye sensitized solar cells. Mater. Chem. Phys. 266, 124520 (2021). https://doi.org/10.1016/j.matchemphys.2021.124520

    Article  CAS  Google Scholar 

  14. J. Sun, X. Yang, L. Zhao, B. Dong, S. Wang, Ag-decorated TiO2 nanofibers for highly efficient dye sensitized solar cell. Mater. Lett. 260, 126882 (2020). https://doi.org/10.1016/j.matlet.2019.126882

    Article  CAS  Google Scholar 

  15. B. Bozkurt Çırak, C. Eden, Y. Erdoğan, Z. Demir, K.V. Özdokur, B. Caglar, S. Morkoç Karadeniz, T. Kılınç, A. Ercan, Ekinci, C. Çırak, The enhanced light harvesting performance of dye-sensitized solar cells based on ZnO nanorod-TiO2 nanotube hybrid photoanodes. Optik. 203, 163963 (2020). https://doi.org/10.1016/j.ijleo.2019.163963

    Article  CAS  Google Scholar 

  16. D. Luo, B. Liu, A. Fujishima, K. Nakata, TiO 2 nanotube arrays formed on Ti meshes with periodically arranged holes for flexible dye-sensitized solar cells. ACS Appl. Nano Mater. 2(6), 3943 (2019). https://doi.org/10.1021/acsanm.9b00849

    Article  CAS  Google Scholar 

  17. T. Bramhankar, S.S. Pawar, J.S. Shaikh, V.C. Gunge, N.I. Beedri, P.K. Baviskar, H.M. Pathan, P.S. Patil, R.C. Kambale, R.S. Pawar, Effect of nickel–zinc co-doped TiO2 blocking layer on performance of DSSCs. J. Alloys Compd. 817, 152810 (2020). https://doi.org/10.1016/j.jallcom.2019.152810

    Article  CAS  Google Scholar 

  18. A. Zatirostami, Increasing the efficiency of TiO2-based DSSC by means of a double layer RF-sputtered thin film blocking layer. Optik. 207, 164419 (2020). https://doi.org/10.1016/j.ijleo.2020.164419

    Article  Google Scholar 

  19. L.S. Chen, M.C. Sil, Y.H. Lee, H.J. Liu, C.M. Chen, Hybrid titanium dioxide/sericite light scattering layer to enhance light harvesting of dye-sensitized solar cells. Electrochim. Acta. 390, 138820 (2021). https://doi.org/10.1016/j.electacta.2021.138820

    Article  CAS  Google Scholar 

  20. F. Santos, C. Hora, D. Ivanou, A.M. Mendes, Efficient liquid-junction monolithic cobalt-mediated dye-sensitized solar cells for solar and artificial light conversion. ACS Appl. Energy Mater. 4(5), 5050 (2021). https://doi.org/10.1021/acsaem.1c00616

    Article  CAS  Google Scholar 

  21. F. Jahantigh, S.M.B. Ghorashi, S. Mozaffari, Orange photoluminescent N-doped graphene quantum dots as an effective co-sensitizer for dye-sensitized solar cells. J. Solid State Electrochem. 24(4), 883 (2020). https://doi.org/10.1007/s10008-020-04515-3

    Article  CAS  Google Scholar 

  22. M.U. Shahid, N.M. Mohamed, A.S. Muhsan, S.N.A. Zaine, A. Yar, W. Ahmad, M.I. Irshad, M.B. Hussain, High-yield TiO2 submicron sphere/nanoparticle-blended scattering layer for efficient and scalable dye-sensitized solar cells. Emergent Mater. 6(2), 671 (2023). https://doi.org/10.1007/s42247-023-00467-2

    Article  CAS  Google Scholar 

  23. X. Xi, X. Ma, Y. Gong, S. Bi, H. Wang, Self-assembled Au/TiO2 composite photo‐anode film for highly efficient dye‐sensitized solar cells. ChemistrySelect 6(21), 5302 (2021). https://doi.org/10.1002/slct.202101237

    Article  CAS  Google Scholar 

  24. B.D. Choudhury, C. Lin, S.M.A.Z. Shawon, J. Soliz-Martinez, H. Huq, M.J. Uddin, A photoanode with hierarchical nanoforest TiO2 structure and silver plasmonic nanoparticles for flexible dye sensitized solar cell. Sci. Rep. 11(1), 7552 (2021). https://doi.org/10.1038/s41598-021-87123-z

    Article  CAS  Google Scholar 

  25. H. Murthy, Nanoarchitectures as photoanodes, in Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells. ed. by A. Pandikumar, K. Jothivenkatachalam, K.B. Bhojanaa (Wiley, New York, 2019), p.34. https://doi.org/10.1002/9781119557401.ch3

    Chapter  Google Scholar 

  26. P. Roy, Y. Kurokawa, S.S. Pandey, Controlling the TiO2-dye nanomolecular interactions for improving the photoconversion in transparent dye-sensitized solar cells. Phys. Status Solidi A (2023). https://doi.org/10.1002/pssa.202300158

    Article  Google Scholar 

  27. D. Devadiga, M. Selvakumar, D. Devadiga, S. Paramasivam, T.N. Ahipa, P. Shetty, S.S. Kumar, Calcium-doped TiO2 microspheres and near-infrared carbazole-based sensitizer for efficient co-sensitized dye-sensitized. Solar cell. Mater. Sci 58(13), 5718 (2023). https://doi.org/10.1007/s10853-023-083769

    Article  CAS  Google Scholar 

  28. H. Sayahi, K. Aghapoor, F. Mohsenzadeh, M. Mohebi Morad, H.R. Darabi, TiO2 nanorods integrated with titania nanoparticles: large specific surface area 1D nanostructures for improved efficiency of dye-sensitized solar cells (DSSCs). Sol. Energy. 215, 311 (2021). https://doi.org/10.1016/j.solener.2020.12.060

    Article  CAS  Google Scholar 

  29. N. Ullah, S.M. Shah, R. Ansir, S. Erten-Ela, S. Mushtaq, S. Zafar, Pyrocatechol violet sensitized cadmium and barium doped TiO2/ZnO nanostructures: as photoanode in DSSC. Mater. Sci. Semicond. Process. 135, 106119 (2021). https://doi.org/10.1016/j.mssp.2021.106119

    Article  CAS  Google Scholar 

  30. P. Umadevi, K.T. Ramya Devi, D.V. Sridevi, S. Perumal, V. Ramesh, Structural, morphological, optical, photocatalytic activity and bacterial growth inhibition of Nd-doped TiO2 nanoparticles. J. Mater. sci. eng. B 286, 116018 (2022). https://doi.org/10.1016/j.mseb.2022.116018

    Article  CAS  Google Scholar 

  31. D.V. Sridevi, K.T. Ramya Devi, R.N. Jayakumar, E. Sundravadivel, pH dependent synthesis of TiO2 nanoparticles exerts its effect on bacterial growth inhibition and osteoblasts proliferation. AIP Adv. 10(9), 095119 (2021). https://doi.org/10.1063/5.0020029

    Article  CAS  Google Scholar 

  32. G. Premanand, D.V. Sridevi, S. Perumal, T. Maiyalagan, J.D. Rodney, V. Ramesh, New hybrid semiconducting CdSe and Fe doped CdSe quantum dots based electrochemical capacitors. J. Mater. sci. eng. B 286, 116015 (2022). https://doi.org/10.1016/j.mseb.2022.116015

    Article  CAS  Google Scholar 

  33. A. Khalifa, S. Shafie, W. Hasan, H.N. Lim, H. N, M. Rusop, S.S. Pandey, A.K. Vats, H.A. AlSultan, B. Samaila, Comprehensive performance analysis of dye-sensitized solar cells using single layer TiO2 photoanode deposited using screen printing technique. Optik 223, 165595 (2020). https://doi.org/10.1016/j.ijleo.2020.165595

    Article  CAS  Google Scholar 

  34. P. Dhamodharan, J. Chen, C. Manoharan, Fabrication of in doped ZnO thin films by spray pyrolysis as photoanode in DSSCs. Surf. Interfaces. 23, 100965 (2021). https://doi.org/10.1016/j.surfin.2021.100965

    Article  CAS  Google Scholar 

  35. E. Akman, Enhanced photovoltaic performance and stability of dye-sensitized solar cells by utilizing manganese-doped ZnO photoanode with europium compact layer. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.114223

    Article  Google Scholar 

  36. A.G.F. Robledo, J.P. Enríquez, C.A.M. Avendaño, G.P. Hernández, P.J.J. Gutiérrez, Characterization of natural dyes on ZnO and TiO2 thin films for applications in DSSC. J. Mater. Sci. Mater. 34(11), 980 (2023). https://doi.org/10.1007/s10854-023-10381-2

    Article  CAS  Google Scholar 

  37. S.P. Lim, Function of compact (blocking) layer in photoanode, in Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells. ed. by A. Pandikumar, K. Jothivenkatachalam, K. Bhojanaa (Wiley, New York, 2019). https://doi.org/10.1002/9781119557401.ch5

    Chapter  Google Scholar 

  38. T. Rajaramanan, G.R.A. Kumara, D. Velauthapillai, P. Ravirajan, M. Senthilnanthanan, Ni/N co-doped P25 TiO2 photoelectrodes for efficient dye-sensitized solar cells. Mater. Sci. Semicond. Process. 135, 106062 (2021). https://doi.org/10.1016/j.mssp.2021.106062

    Article  CAS  Google Scholar 

  39. B. Kilic, Produce of carbon nanotube/ZnO nanowires hybrid photoelectrode for efficient dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 30(4), 3482 (2019). https://doi.org/10.1007/s10854-018-00624-y

    Article  CAS  Google Scholar 

  40. F.M.M. Dos Santos, A.M.B. Leite, L.R.B. Da Conceição, Y. Sasikumar, R. Atchudan, M.F. Pinto, R. Suresh Babu, A.L.F. De Barros, Effect of bandgap energies by various color petals of Gerbera jamesonii flower dyes as a photosensitizer on enhancing the efficiency of dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 33(25), 20338 (2022). https://doi.org/10.1007/s10854-022-08849-8

    Article  CAS  Google Scholar 

  41. Z. Yi, Y. Zeng, H. Wu, X. Chen, Y. Fan, H. Yang, Y. Tang, Y. Yi, J. Wang, P. Wu, Synthesis, surface properties, crystal structure and dye-sensitized solar cell performance of TiO2 nanotube arrays anodized under different parameters. Results Phys. 15, 102609 (2019). https://doi.org/10.1016/j.rinp.2019.102609

    Article  Google Scholar 

  42. M. Ben Karoui, S. Saadaoui, A. Torchani, R. Gharbi, Effect of natural sensitizers anchoring to nanoporous TiO2 on performance of dye-sensitized solar cells. J. Electron. Mater. 50(8), 4797 (2021). https://doi.org/10.1007/s11664-021-09010-7

    Article  CAS  Google Scholar 

  43. V. Gowthambabu, M. Deshpande, R. Govindaraj, V.K. Nithesh Krishna, M. Leela Charumathi, J. Manish Kumar, M.S. Dhilip Vignesh, R. Isaac Daniel, P. Ramasamy, Synthesis of anatase TiO2 microspheres and their efficient performance in dye-sensitized solar cell. J. Mater. Sci.: Mater. Electron. 32(22), 26306 (2021). https://doi.org/10.1007/s10854-021-06923-1

    Article  CAS  Google Scholar 

  44. I. Mohammadi, F. Zeraatpisheh, E. Ashiri, K. Abdi, Solvothermal synthesis of g-C3N4 and ZnO nanoparticles on TiO2 nanotube as photoanode in DSSC. Int. J. Hydrog. 45(38), 18831 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.277

    Article  CAS  Google Scholar 

  45. F. Khojasteh, M.R. Mersagh, H. Hashemipour, The influences of Ni, Ag-doped TiO2 and SnO2, Ag-doped SnO2/TiO2 nanocomposites on recombination reduction in dye synthesized solar cells. J. Alloys Compd. 890, 161709 (2022). https://doi.org/10.1016/j.jallcom.2021.161709

    Article  CAS  Google Scholar 

  46. M.A. Boda, B. Bozkurt Çırak, Z. Demir, C. Çırak, Facile synthesis of hybrid ZnO nanostructures by combined electrodeposition and chemical bath deposition for improved performance of dye-sensitized solar cell. Mater. Lett. 248, 143 (2019). https://doi.org/10.1016/j.matlet.2019.04.023

    Article  CAS  Google Scholar 

  47. R.A. Wahyuono, G. Jia, J. Plentz, A. Dellith, J. Dellith, H.-M. Westendorf, F. Seyring, M. Presselt, G. Andrä, M. Rettenmayr, B. Dietzek, Self‐Assembled Graphene/MWCNT bilayers as Platinum‐Free Counter Electrode in Dye‐Sensitized Solar cells. ChemPhysChem. 20(24), 3336 (2019). https://doi.org/10.1002/cphc.201900714

    Article  CAS  Google Scholar 

  48. V. Jayapal, S. Rangasamy, S. Venkidusamy, R. Venkatesan, J. Mayandi, J.M. Pearce, The use of urea as an N-doping 3D hierarchical preserving agent for titanium dioxide nanostructures tailored for dye‐sensitized solar cells. Int. J. Energy Res. 46(7), 9533 (2022). https://doi.org/10.1002/er.7823

    Article  CAS  Google Scholar 

  49. Y. Ding, J. Yao, J.L. Hu, S. Dai, Controlled synthesis of symbiotic structured TiO2 microspheres to improve the performance of dye-sensitized solar cells. Sol. Energy 183, 587 (2019). https://doi.org/10.1016/j.solener.2019.02.063

    Article  CAS  Google Scholar 

  50. K. Wang, L. Niu, L. Tao, Y. Zhang, X. Zhou, Fabrication of TiO2 microspheres with continuously distributed sizes from nanometer to Micronmeter: the increasing light scattering ability and the enhanced photovoltaic performance. Sol. Energy. 230, 935 (2021). https://doi.org/10.1016/j.solener.2021.11.010

    Article  CAS  Google Scholar 

  51. K. Salimi, A. Atilgan, M.Y. Aydin, H. Yildirim, N. Celebi, A. Yildiz, Plasmonic mesoporous core-shell Ag-Au@TiO2 photoanodes for efficient light harvesting in dye sensitized solar cells. Sol. Energy. 193, 820 (2019). https://doi.org/10.1016/j.solener.2019.10.039

    Article  CAS  Google Scholar 

  52. Q.A. Yousif, K.M. Mahdi, H.A. Alshamsi, TiO2/graphene and MWCNT/PEDOT:PSS nanocomposite-based dye-sensitized solar cell: design, fabrication, characterization, and investigation. Optik. 219, 165294 (2020). https://doi.org/10.1016/j.ijleo.2020.165294

    Article  CAS  Google Scholar 

  53. M.G.C.M. Kumari, C.S. Perera, B.S. Dassanayake, M.A.K.L. Dissanayake, G.K.R. Senadeera, Highly efficient plasmonic dye-sensitized solar cells with silver nanowires and TiO2 nanofibres incorporated multi-layered photoanode. Electrochim. Acta. 298, 330 (2019). https://doi.org/10.1016/j.electacta.2018.12.079

    Article  CAS  Google Scholar 

  54. V.S. Manikandan, A.K. Palai, A. Ramadoss, S. Mohanty, M. Navaneethan, Plasmon enfolded TiO2 hierarchical photoanode: fabrication and the performance evaluation as liquid-based dye-sensitized solar cell. J. Mater. Sci. : Mater. Electron. 33(11), 8655 (2022). https://doi.org/10.1007/s10854-021-06724-6

    Article  CAS  Google Scholar 

  55. N. Kanjana, W. Maiaugree, P. Poolcharuansin, P. Laokul, Synthesis and characterization of Fe-doped TiO2 hollow spheres for dye-sensitized solar cell applications. J. Mater. sci. eng. B 271, 115311 (2021). https://doi.org/10.1016/j.mseb.2021.115311

    Article  CAS  Google Scholar 

  56. Y.H. Nien, H.H. Chen, H.H. Hsu, M. Rangasamy, G.M. Hu, Z.R. Yong, P.Y. Kuo, J.C. Chou, C.H. Lai, C.C. Ko, J.X. Chang, Study of how Photoelectrodes modified by TiO2/Ag nanofibers in various structures enhance the efficiency of Dye-Sensitized Solar cells under low illumination. Energies. 13(9), 2248 (2020). https://doi.org/10.3390/en13092248

    Article  CAS  Google Scholar 

  57. S. Borbón, S. Lugo, D. Pourjafari, N. Pineda Aguilar, G. Oskam, I. López, Open-circuit voltage (VOC) enhancement in TiO2-based DSSCs: incorporation of ZnO nanoflowers and au nanoparticles. ACS Omega 5(19), 10977 (2020). https://doi.org/10.1021/acsomega.0c00794

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the SRM Institute of Science and Technology for providing central instrumentation facilities such as PXRD, UV-visible, FT-IR (SRM-NRC), AFM (SRM-PCNF), HR-SRM, EDS, EIS, and I-V at SRM-SCIF, Kattankulathur Chengalpatu, Chennai 602 203, Tamil Nadu, India.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

NN: synthesis, characterization, analysis, and manuscript preparation. AA : analysis and discussions (PXRD and FT-IR studies). SDV : analysis and discussions (UV and SEM). MB: analysis, discussions and interpretations (I-V and EIS). NB: analysis, discussions and interpretations (I-V and EIS). RV: supervise, concept creations, corrections, interpretation, and guiding the manuscript preparation.

Corresponding author

Correspondence to V. Ramesh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author state that there is no conflict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveenkumar, N., Abhishek, A., Sridevi, D.V. et al. Size-dependent structural, morphological, optical, and electrical studies of hydrothermally synthesized TiO2 nanocorals for DSSC application. J Mater Sci: Mater Electron 34, 2137 (2023). https://doi.org/10.1007/s10854-023-11520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11520-5

Navigation