Skip to main content
Log in

Plasmon enfolded TiO2 hierarchical photoanode: fabrication and the performance evaluation as liquid-based dye-sensitized solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Alteration of the optical and photoelectrical properties of the photoanode materials are a prerequisite for improving the performance of dye-sensitized solar cell (DSSC). In this work, Ag-decorated cauliflower-like TiO2 photoanode was fabricated and studied the photovoltaic performance. The hierarchical structured TiO2 with abundant bundles exhibited a novel matrix for Ag deposition by the photoreduction technique. It is significant that the Ag nanoparticles showed a uniform size distribution on hierarchical structured TiO2 nanorods (HNRs). The plasmonic particle enfolded photoanode-based DSSC exhibited an efficiency of 4.15%, which is higher compared to the pristine TiO2 HNR (3.83%). The progress in the efficiency of plasmon particle-based DSSC is crucial, regarding the optical properties, and reduced charge transport resistance observed from the UV visible analysis (UV-Vis) and electrochemical impedance spectra (EIS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. O’regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737 (1991)

    Article  Google Scholar 

  2. Q. Liu, J. Wang, Dye-sensitized solar cells based on surficial TiO2 modification. Sol. Energy 184, 454–465 (2019)

    Article  CAS  Google Scholar 

  3. M. Prabhu, J. Mayandi, R. Mariammal, V. Vishnukanthan, J.M. Pearce, N. Soundararajan et al., Peanut shaped ZnO microstructures: controlled synthesis and nucleation growth toward low-cost dye sensitized solar cells. Mater. Res. Express 2(6), 066202 (2015)

    Article  Google Scholar 

  4. S. Kanmani, N. Rajamanickam, K. Ramachandran, Comparison of Eosin yellowish dye–sensitized and CdS-sensitized TiO2 nanomaterial–based solid-state solar cells. J. Solid State Electrochem. 24(10), 2499–2509 (2020)

    Article  CAS  Google Scholar 

  5. A.K. Gupta, P. Srivastava, L. Bahadur, Improved performance of Ag-doped TiO2 synthesized by modified sol–gel method as photoanode of dye-sensitized solar cell. Appl. Phys. A 122(8), 1–13 (2016)

    Google Scholar 

  6. S. Bhardwaj, A. Pal, K. Chatterjee, T.H. Rana, G. Bhattacharya, S.S. Roy et al., Fabrication of efficient dye-sensitized solar cells with photoanode containing TiO2–Au and TiO2–Ag plasmonic nanocomposites. J. Mater. Sci. 29(21), 18209–18220 (2018)

    CAS  Google Scholar 

  7. N. Rajamanickam, S. Kanmani, S. Rajashabala, K. Ramachandran, Influence of Sr doping on structural, optical and magnetic properties of TiO2 nanoparticles. Mater. Lett. 161, 520–522 (2015)

    Article  CAS  Google Scholar 

  8. A. Neshat, R. Safdari, Enhancement in dye-sensitized solar cells using surface plasmon resonance effects from colloidal core‐shell Au@SiO2 nanoparticles. ChemistrySelect 4(17), 4995–5001 (2019)

    Article  CAS  Google Scholar 

  9. K.R. Aneesiya, C. Louis, Localized surface plasmon resonance of Cu-doped ZnO nanostructures and the material’s integration in dye sensitized solar cells (DSSCs) enabling high open-circuit potentials. J. Alloys Compd. 20(2020)

  10. H.-Y. Jung, I.-S. Yeo, T.-U. Kim, H.-C. Ki, H.-B. Gu, Surface plasmon resonance effect of silver nanoparticles on a TiO2 electrode for dye-sensitized solar cells. Appl. Surf. Sci. 432, 266–271 (2018)

    Article  CAS  Google Scholar 

  11. M. Khan, N. Fatima, G.M. Mustafa, M. Sabir, S.A. Abubshait, H.A. Abubshait et al., Improved photovoltaic properties of dye sensitized solar cell by irradiations of Ni2+ ions on Ag-doped TiO2 photoanode. Int. J. Energy Res. 45(6), 9685–9693 (2021)

    Article  CAS  Google Scholar 

  12. K. Pugazhendhi, B. Praveen, D. Sharmila, J.S.S. Mary, P.N. Kumar, V. Bharathilenin et al., Plasmonic TiO2/Al@ZnO nanocomposite-based novel dye-sensitized solar cell with 11.4 % power conversion efficiency. Sol. Energy 215, 443–450 (2021)

    Article  CAS  Google Scholar 

  13. M. Dhonde, K. Sahu, V. Murty, Cu-doped TiO2 nanoparticles/graphene composites for efficient dye-sensitized solar cells. Sol. Energy 220, 418–424 (2021)

    Article  CAS  Google Scholar 

  14. X. He, Y. Guo, X. Li, J. Liu, In situ ligand-free growth of TiO2-escapsulated Au nanocomposites on photoanode for efficient dye sensitized solar cells. Chem. Eng. J. 396, 125302 (2020)

    Article  CAS  Google Scholar 

  15. J. Wan, L. Tao, B. Wang, J. Zhang, H. Wang, P.D. Lund, A facile method to produce TiO2 nanorods for high-efficiency dye solar cells. J. Power Sources 438, 227012 (2019)

    Article  CAS  Google Scholar 

  16. S.D. e Asl, A.E. Saed, S.K. Sadrnezhaad, Hierarchical rutile/anatase TiO2 nanorod/nanoflower thin film: synthesis and characterizations. Mater. Sci. Semicond. Process. 93, 252–259 (2019)

    Article  Google Scholar 

  17. H. Hu, J. Shen, X. Cao, H. Wang, H. Lv, Y. Zhang et al., Photo-assisted deposition of Ag nanoparticles on branched TiO2 nanorod arrays for dye-sensitized solar cells with enhanced efficiency. J. Alloy. Compd. 694, 653–661 (2017)

    Article  CAS  Google Scholar 

  18. A. Roy, S. Mukhopadhyay, P.S. Devi, S. Sundaram, Polyaniline-layered rutile TiO2 nanorods as alternative photoanode in dye-sensitized solar cells. ACS Omega 4(1), 1130–1138 (2019)

    Article  CAS  Google Scholar 

  19. V. Manikandan, A.K. Palai, S. Mohanty, S.K. Nayak, Eosin-Y sensitized core-shell TiO2-ZnO nano-structured photoanodes for dye-sensitized solar cell applications. J. Photochem. Photobiol. B 183, 397–404 (2018)

    Article  CAS  Google Scholar 

  20. I. Zada, W. Zhang, W. Zheng, Y. Zhu, Z. Zhang, J. Zhang et al., The highly efficient photocatalytic and light harvesting property of Ag-TiO2 with negative nano-holes structure inspired from cicada wings. Sci. Rep. 7(1), 17277 (2017)

    Article  Google Scholar 

  21. S. Suriyaraj, R. Selvakumar, Room temperature biosynthesis of crystalline TiO2 nanoparticles using Bacillus licheniformis and studies on the effect of calcination on phase structure and optical properties. RSC Adv. 4(75), 39619–39624 (2014)

    Article  CAS  Google Scholar 

  22. X. Wang, Z. Wang, X. Jiang, J. Tao, Z. Gong, Y. Cheng et al., Silver-decorated TiO2 nanorod array films with enhanced photoelectrochemical and photocatalytic properties. J. Electrochem. Soc. 163(10), H943–H950 (2016)

    Article  CAS  Google Scholar 

  23. P. Scherrer, Determination of the size and internal structure of colloidal particles using X-rays. Nachr Ges Wiss Göttingen 2, 98–100 (1918)

    Google Scholar 

  24. J.I. Langford, A. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102–113 (1978)

    Article  CAS  Google Scholar 

  25. J. Xu, Z. Wang, W. Li, X. Zhang, D. He, X. Xiao, Ag nanoparticles located on three-dimensional pine tree-like hierarchical TiO2 nanotube array films as high-efficiency plasmonic photocatalysts. Nanoscale Res. Lett. 12(1), 54 (2017)

    Article  Google Scholar 

  26. C. Stella, D. Prabhakar, M. Prabhu, N. Soundararajan, K. Ramachandran, Oxygen vacancies induced room temperature ferromagnetism and gas sensing properties of Co-doped TiO2 nanoparticles. J. Mater. Sci. 27(2), 1636–1644 (2016)

    CAS  Google Scholar 

  27. K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun. 2(3), 207–210 (2000)

    Article  CAS  Google Scholar 

  28. H. Hu, J. Ding, S. Zhang, Y. Li, L. Bai, N. Yuan, Photodeposition of Ag2S on TiO2 nanorod arrays for quantum dot-sensitized solar cells. Nanoscale Res. Lett. 8(1), 10 (2013)

    Article  CAS  Google Scholar 

  29. B. Ünlü, S. Çakar, M. Özacar, The effects of metal doped TiO2 and dithizone-metal complexes on DSSCs performance. Sol. Energy 166, 441–449 (2018)

    Article  Google Scholar 

  30. H. Chen, N. Li, Y.-H. Wu, J.-B. Shi, B.-X. Lei, Z.-F. Sun, A novel cheap, one-step and facile synthesis of hierarchical TiO2 nanotubes as fast electron transport channels for highly efficient dye-sensitized solar cells. Adv. Powder Technol. 31(4), 1556–1563 (2020)

    Article  CAS  Google Scholar 

  31. X. He, Y. Guo, X. Li, J. Liu, Light harvesting enhancement by hierarchical Au/TiO2 microspheres consisted with nanorod units for dye sensitized solar cells. Sol. Energy 207, 592–598 (2020)

    Article  CAS  Google Scholar 

  32. M. Khan, B. Mehmood, G.M. Mustafa, K. Humaiyoun, N. Alwadai, A.H. Almuqrin et al., Effect of silver (Ag) ions irradiation on the structural, optical and photovoltaic properties of Mn doped TiO2 thin films based dye sensitized solar cells. Ceram. Int. 47(11), 15801–15806 (2021)

    Article  CAS  Google Scholar 

  33. T. Bramhankar, S. Pawar, J. Shaikh, V. Gunge, N. Beedri, P. Baviskar et al., Effect of Nickel–Zinc Co-doped TiO2 blocking layer on performance of DSSCs. J. Alloy. Compd. 817, 152810 (2020)

    Article  CAS  Google Scholar 

  34. M. Khan, M. Sabir, G.M. Mustafa, M. Fatima, A. Mahmood, S.A. Abubshait et al., 300 keV cobalt ions irradiations effect on the structural, morphological, optical and photovolatic properties of Zn doped TiO2 thin films based dye sensitized solar cells. Ceram. Int. 46(10), 16813–16819 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Manikandan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, V.S., Palai, A.K., Ramadoss, A. et al. Plasmon enfolded TiO2 hierarchical photoanode: fabrication and the performance evaluation as liquid-based dye-sensitized solar cell. J Mater Sci: Mater Electron 33, 8655–8664 (2022). https://doi.org/10.1007/s10854-021-06724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06724-6

Navigation