Skip to main content
Log in

Optical and electrical anisotropies in Cu2ZnSnS4 and Cu2MgSnS4 thin films deposited by thermal evaporation at obliquely incident angle

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, CMTS (Cu2MgSnS4) and CZTS (Cu2ZnSnS4) thin films have been deposited at room temperature by thermal evaporation at different oblique incident angles γ = 00°, 30°, 60°, 75° and 85°. XRD and Raman measurements were carried out to study the structural properties. The morphological properties and compositional analysis of the synthesised thin films were analysed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The optical and electrical properties of the resulting films were evaluated by UV–Vis–NIR spectrophotometry and 4-point probes, respectively. The surface and cross-section of the films were visualised by scanning electron microscopy (SEM). The as-deposited films exhibited a tilted columnar structure in the direction of incident flux. The dependence of the optical properties on the deposition angle was investigated over a wavelength range from 300 to 1800 nm. The transmission spectra (T(λ)) indicate that the number of fringes decreases as the incident angle increases from 00° to 85° for both materials. The in-plane birefringence of CZTS and CMTS indicates that the optical anisotropy is maximal for an incident angle of γ = 60°. Similarly, the maximum electrical anisotropy is observed for the angle of incidence of 60°. In addition, a strong dependence of the anisotropy, film thickness and porosity on the deposition angle was found for both materials. It appears that the 60° angle of incidence is critical for enhancing the anisotropy properties. Accordingly, the oblique angle of incidence process offers a promising route to producing columnar nanostructures with improved anisotropy properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Y.-J. Lee, B.-S. Kim, S. Ifitiquar, C. Park, J. Yi, Silicon solar cells: past, present and the future. J. Korean Phys. Soc. 65, 355–361 (2014). https://doi.org/10.3938/jkps.65.355

    Article  CAS  Google Scholar 

  2. T. Rana, N.M. Shinde, J. Kim, Novel chemical route for chemical bath deposition of Cu2ZnSnS4 (CZTS) thin films with stacked precursor thin films. Mater. Lett. (2015). https://doi.org/10.1016/j.matlet.2015.09.100

    Article  Google Scholar 

  3. J. Hu, H. Xiao, G. Liang, Z. Su, F. Ping, X. Lin, Preparation of low roughness CZTS thin film and solar cell by SMPLD method. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.06.305

    Article  Google Scholar 

  4. S. Atri, M. Gusain, P. Kumar, S. Uma, R. Nagarajan, Role of the solvent medium in the wet-chemical synthesis of CuSbS2, Cu3SbS3, and bismuth substituted Cu3SbS3. J. Chem. Sci. 132, 132 (2020). https://doi.org/10.1007/s12039-020-01831-z

    Article  CAS  Google Scholar 

  5. S. Chamekh, N. Khemiri, M. Kanzari, Effect of annealing under different atmospheres of CZTS thin films as absorber layer for solar cell application. SN Appl. Sci. 2, 1507 (2020). https://doi.org/10.1007/s42452-020-03287-9

    Article  CAS  Google Scholar 

  6. A. Yildiz, H. Cansizoglu, T. Karabacak, Electrical transport in AZO nanorods. Appl. Surf. Sci. 352, 2–4 (2015). https://doi.org/10.1016/j.apsusc.2015.02.067

    Article  CAS  Google Scholar 

  7. N.O. Young, J. Kowal, Optically active fluorite films. Nature 183, 104–105 (1959). https://doi.org/10.1038/183104a0

    Article  CAS  Google Scholar 

  8. K. Robbie, M.J. Brett, Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Sci. Technol. Vac. Surf. Films 15, 1460–1465 (1997). https://doi.org/10.1116/1.580562

    Article  CAS  Google Scholar 

  9. A. Harizi, A. Sinaoui, F. Chaffar Akkari, M. Kanzari, Physical properties of Sn4Sb6S13 thin films prepared by a glancing angle deposition method. Mater. Sci. Semicond. Process. 41, 450–456 (2016). https://doi.org/10.1016/j.mssp.2015.10.014

    Article  CAS  Google Scholar 

  10. J. Parra-Barranco, F.J. García-García, V. Rico, A. Borrás, C. López-Santos, F. Frutos, A. Barranco, A.R. González-Elipe, Anisotropic in-plane conductivity and dichroic gold plasmon resonance in plasma-assisted ITO thin films e-beam-evaporated at oblique angles. ACS Appl. Mater. Interfaces 7, 10993–11001 (2015). https://doi.org/10.1021/acsami.5b02197

    Article  CAS  Google Scholar 

  11. S. Jain, A. Paliwal, V. Gupta, M. Tomar, SPR based refractive index modulation of nanostructured SiO2 films grown using GLAD assisted RF sputtering technique. Surf. Interfaces 34, 102355 (2022). https://doi.org/10.1016/j.surfin.2022.102355

    Article  CAS  Google Scholar 

  12. C. Grüner, S. Liedtke, J. Bauer, S. Mayr, B. Rauschenbach, Morphology of thin films formed by oblique physical vapor deposition. ACS Appl. Nano Mater. (2018). https://doi.org/10.1021/acsanm.8b00124

    Article  Google Scholar 

  13. F. Chaffar Akkari, H. Ben Jbara, D. Abdelkader, B. Gallas, M. Kanzari, Effect of angle deposition γ on the structural, optical and electrical properties of copper oxide zigzag (+γ, −γ) nanostructures elaborated by glancing angle deposition. Thin Solid Films 657, 61–69 (2018). https://doi.org/10.1016/j.tsf.2018.05.006

    Article  CAS  Google Scholar 

  14. A. Sinaoui, I. Trabelsi, F. Akkari, F. Aousgi, K. Mounir, Study of structural, morphological and optical properties of Sb2S3 thin films deposited by oblique angle deposition. Int. J. Thin Films Sci. Technol. 3, 19–25 (2014). https://doi.org/10.12785/ijtfst/030104

    Article  Google Scholar 

  15. H. Ben Jbara, D. Abdelkader, F. Akkari, K. Mounir, M. Arab Pour Yazdi, A. Billard, Preparation of Cu–Fe–O thin films via post oxidation of iron/copper bilayers: structural, optical and electrical properties. Opt. Quantum Electron. (2019). https://doi.org/10.1007/s11082-019-1807-y

    Article  Google Scholar 

  16. M.M. Shahidi, H. Rezagholipour Dizaji, M.H. Ehsani, M.E. Ghazi, Effect of GLAD technique on optical and electrical properties of SnO2/Ag/SnO2 structure. Infrared Phys. Technol. 106, 103263 (2020). https://doi.org/10.1016/j.infrared.2020.103263

    Article  CAS  Google Scholar 

  17. S. Padhy, V. Kumar, N.B. Chaure, U.P. Singh, Impact of germanium nano layer on the CZTSe absorber layer properties. Mater. Sci. Semicond. Process. 138, 106276 (2022). https://doi.org/10.1016/j.mssp.2021.106276

    Article  CAS  Google Scholar 

  18. K.B. Chavan, S.V. Desarada, N.B. Chaure, Structural and optical investigations on direct current (DC) magnetron sputtered CZTS thin film. Mater. Today Proc. 68, 2687–2690 (2022). https://doi.org/10.1016/j.matpr.2022.05.234

    Article  CAS  Google Scholar 

  19. G. Bousselmi, N. Khemiri, A. Souha, A. Cantarero, M. Kanzari, Cation substitution of copper by silver in the earth-abundant compound Cu2ZnSnS4: comparative study of structural, morphological, and optical properties. J. Electron. Mater. 50, 1–8 (2021). https://doi.org/10.1007/s11664-020-08711-9

    Article  CAS  Google Scholar 

  20. D. Mitzi, O. Gunawan, T. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95, 1421–1436 (2011). https://doi.org/10.1016/j.solmat.2010.11.028

    Article  CAS  Google Scholar 

  21. X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, A review on development prospect of CZTS based thin film solar cells. Int. J. Photoenergy 2014, e613173 (2014). https://doi.org/10.1155/2014/613173

    Article  CAS  Google Scholar 

  22. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014). https://doi.org/10.1002/aenm.201301465

    Article  CAS  Google Scholar 

  23. M.S. Kumar, S.P. Madhusudanan, S.K. Batabyal, Substitution of Zn in earth-abundant Cu2ZnSn(S,Se)4 based thin film solar cells—a status review. Sol. Energy Mater. Sol. Cells 185, 287–299 (2018). https://doi.org/10.1016/j.solmat.2018.05.003

    Article  CAS  Google Scholar 

  24. L. Huang, J. Li, S. Wang, L. Zhong, X. Xiao, Forming an ultrathin SnS layer on Cu2ZnSnS4 surface to achieve highly efficient solar cells with Zn(O,S) buffer. Sol. RRL 4, 2000010 (2020). https://doi.org/10.1002/solr.202000010

    Article  CAS  Google Scholar 

  25. N. Khemiri, S. Chamekh, M. Kanzari, Properties of thermally evaporated CZTS thin films and numerical simulation of earth abundant and non toxic CZTS/Zn(S,O) based solar cells. Sol. Energy 207, 496–502 (2020). https://doi.org/10.1016/j.solener.2020.06.114

    Article  CAS  Google Scholar 

  26. G. Yang, X. Zhai, Y. Li, B. Yao, Z. Ding, R. Deng, H. Zhao, L. Zhang, Z. Zhang, Synthesis and characterizations of Cu2MgSnS4 thin films with different sulfuration temperatures. Mater. Lett. 242, 58–61 (2019). https://doi.org/10.1016/j.matlet.2019.01.102

    Article  CAS  Google Scholar 

  27. A. Hammoud, A. Jrad, B. Yahmadi, S. Mehdi, L. Ajili, F. Kouki, N. Kamoun, Investigation on Cu2MgSnS4 thin film prepared by spray pyrolysis for photovoltaic and humidity sensor applications. Opt. Mater. (2022). https://doi.org/10.1016/j.optmat.2022.112296

    Article  Google Scholar 

  28. M. Souli, R. Engazou, L. Ajili, N. Kamoun-Turki, Physical properties evolution of sprayed Cu2MgSnS4 thin films with growth parameters and vacuum annealing. Superlattices Microstruct. 147, 106711 (2020). https://doi.org/10.1016/j.spmi.2020.106711

    Article  CAS  Google Scholar 

  29. G. Yang, X. Zhai, Y. Li, B. Yao, Z. Ding, R. Deng, H. Zhao, L. Zhang, Z. Zhang, Synthesis and characterizations of Cu2MgSnS4 thin films with different sulfuration temperatures. Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2019.01.102

    Article  Google Scholar 

  30. F. Akkari, D. Abdelkader, B. Gallas, K. Mounir, Ellipsometric characterization and optical anisotropy of nanostructured CuIn3S5 and CuIn5S8 thin films. Mater. Sci. Semicond. Process. 71, 156–160 (2017). https://doi.org/10.1016/j.mssp.2017.07.023

    Article  CAS  Google Scholar 

  31. A. Ferreira, P. Pedrosa, N. Martin, M.A.P. Yazdi, A. Billard, S. Lanceros-Méndez, F. Vaz, Nanostructured Ti1xCux thin films with tailored electrical and morphological anisotropy. Thin Solid Films 672, 47–54 (2019). https://doi.org/10.1016/j.tsf.2019.01.008

    Article  CAS  Google Scholar 

  32. R. El Beainou, N. Martin, V. Potin, P. Pedrosa, M. Arab Pour Yazdi, A. Billard, W-Cu sputtered thin films grown at oblique angles from two sources: pressure and shielding effects. Surf. Coat. Technol. (2017). https://doi.org/10.1016/j.surfcoat.2017.09.062

    Article  Google Scholar 

  33. F. Hichem, F. Djeffal, N. Martin, Highly improved responsivity of self-powered UV-visible photodetector based on TiO2/Ag/TiO2 multilayer deposited by GLAD technique: effects of oriented columns and nano-sculptured surface. Appl. Surf. Sci. 529, 147069 (2020). https://doi.org/10.1016/j.apsusc.2020.147069

    Article  CAS  Google Scholar 

  34. A. Hammoud, B. Yahmadi, M. Souli, S.A. Ahmed, L. Ajili, N. Kamoun-Turki, Effect of sulfur content on improving physical properties of new sprayed Cu2MgSnS4 thin films compound for optoelectronic applications. Eur. Phys. J. Plus 137, 232 (2022). https://doi.org/10.1140/epjp/s13360-022-02417-z

    Article  CAS  Google Scholar 

  35. M. Wei, Q. Du, R. Wang, G. Jiang, W. Liu, C. Zhu, Synthesis of new earth-abundant kesterite Cu2MgSnS4 nanoparticles by hot-injection method. Chem. Lett. 43, 1149–1151 (2014). https://doi.org/10.1246/cl.140208

    Article  CAS  Google Scholar 

  36. X. Shuai, W. Shen, Z. Hou, S. Ke, C. Xu, C. Jiang, A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell. Nanoscale Res. Lett. 9, 513 (2014). https://doi.org/10.1186/1556-276X-9-513

    Article  CAS  Google Scholar 

  37. A. Sharma, P. Sahoo, A. Singha, S. Padhan, G. Udayabhanu, R. Thangavel, Efficient visible-light-driven water splitting performance of sulfidation-free, solution processed Cu2MgSnS4 thin films: role of post-drying temperature. Sol. Energy 203, 284–295 (2020). https://doi.org/10.1016/j.solener.2020.04.027

    Article  CAS  Google Scholar 

  38. Y. Ren, J.J. Scragg, T. Ericson, T. Kubart, C. Platzer-Björkman, Reactively sputtered films in the CuxS–ZnS–SnSy system: from metastability to equilibrium. Thin Solid Films 582, 208–214 (2015). https://doi.org/10.1016/j.tsf.2014.10.076

    Article  CAS  Google Scholar 

  39. A. Jemi, D. Abdelkader, F.C. Akkari, B. Gallas, M. Kanzari, Optical characterization of nano-structured Cu2ZnSnS4 thin films deposited by GLAD technique. Chin. J. Phys. 60, 193–207 (2019). https://doi.org/10.1016/j.cjph.2019.04.019

    Article  CAS  Google Scholar 

  40. X. Fontané, V. Izquierdo-Roca, E. Saucedo, S. Schorr, V.O. Yukhymchuk, M.Y. Valakh, A. Pérez-Rodríguez, J.R. Morante, Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4. J. Alloys Compd. 539, 190–194 (2012). https://doi.org/10.1016/j.jallcom.2012.06.042

    Article  CAS  Google Scholar 

  41. A. Khare, P. Kishore, S. Reddy, K. Rajan, A. Sanghani, Methodology for fault grading high speed I/O interfaces used in complex Graphics Processing Unit, in 2012 IEEE International Test Conference (2012), pp. 1–8. https://doi.org/10.1109/TEST.2012.6401585

  42. R. Caballero, E. Garcia-Llamas, J.M. Merino, M. León, I. Babichuk, V. Dzhagan, V. Strelchuk, M. Valakh, Non-stoichiometry effect and disorder in Cu2ZnSnS4 thin films obtained by flash evaporation: Raman scattering investigation. Acta Mater. 65, 412–417 (2014). https://doi.org/10.1016/j.actamat.2013.11.010

    Article  CAS  Google Scholar 

  43. N. Tounsi, A. Barhoumi, F. Chaffar Akkari, M. Kanzari, H. Guermazi, S. Guermazi, Structural and optical characterization of copper oxide composite thin films elaborated by GLAD technique. Vacuum 121, 9–17 (2015). https://doi.org/10.1016/j.vacuum.2015.07.011

    Article  CAS  Google Scholar 

  44. Y. Zhao, D. Ye, G.-C. Wang, T.-M. Lu, Designing nanostructures by glancing angle deposition, in Nanotubes and Nanowires (SPIE, 2003), pp. 59–73. https://doi.org/10.1117/12.505253

  45. F.C. Akkari, M. Kanzari, B. Rezig, Preparation and characterization of obliquely deposited copper oxide thin films. Eur. Phys. J. Appl. Phys. 40, 49–54 (2007). https://doi.org/10.1051/epjap:2007128

    Article  CAS  Google Scholar 

  46. A. Harizi, M. Ben Rabeh, F. Laatar, F. Chaffar Akkari, M. Kanzari, Substrate temperature dependence of structural, morphological and optical properties of Sn4Sb6S13 thin films deposited by vacuum thermal evaporation. Mater. Res. Bull. 79, 52–62 (2016). https://doi.org/10.1016/j.materresbull.2016.02.043

    Article  CAS  Google Scholar 

  47. F.C. Akkari, I. Trabelsi, D. Abdelkader, B. Gallas, M. Kanzari, Impedance spectroscopy characterization of anisotropic nano-sculptured copper oxide Cu2O thin films for optoelectronic applications. Semicond. Sci. Technol. 34, 075026 (2019). https://doi.org/10.1088/1361-6641/ab0ecf

    Article  CAS  Google Scholar 

  48. R.N. Tait, T. Smy, M.J. Brett, Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226, 196–201 (1993). https://doi.org/10.1016/0040-6090(93)90378-3

    Article  CAS  Google Scholar 

  49. K. Hara, M. Kamiya, T. Hashimoto, K. Okamoto, H. Fujiwara, Columnar structure of obliquely deposited iron films prepared at low substrate temperatures. Thin Solid Films 158, 239–244 (1988). https://doi.org/10.1016/0040-6090(88)90026-0

    Article  CAS  Google Scholar 

  50. A. Sinaoui, N. Khemiri, F. Akkari, B. Gallas, K. Mounir, Comparative study of structural and morphological properties of nanostructured CuIn2n+1 S3n+2 (n=0, 1 and 2) thin films produced by oblique angle deposition (2013)

  51. F.K. Butt, M. Mirza, C. Cao, F. Idrees, M. Tahir, M. Safdar, Z. Ali, M. Tanveer, I. Aslam, Synthesis of mid-infrared SnSe nanowires and their optoelectronic properties. CrystEngComm 16, 3470–3473 (2014). https://doi.org/10.1039/C4CE00267A

    Article  CAS  Google Scholar 

  52. S. Belgacem, R. Bennaceur, Propriétés optiques des couches minces de SNO2 et CuInS2 airless spray. J. Phys. III 1, 827 (1991). https://doi.org/10.1051/jp3:1991158

    Article  Google Scholar 

  53. G. Beydaghyan, K. Kaminska, T. Brown, K. Robbie, Enhanced birefringence in vacuum evaporated silicon thin films. Appl. Opt. 43, 5343–5349 (2004). https://doi.org/10.1364/AO.43.005343

    Article  CAS  Google Scholar 

  54. K.M.A. Sobahan, Y.J. Park, C.K. Hwangbo, Effect of deposition angle on the optical and the structural properties of Ta2O5 thin films fabricated by using glancing angle deposition. J. Korean Phys. Soc. 55, 1272–1277 (2009)

    Article  CAS  Google Scholar 

  55. S.-H. Woo, C.K. Hwangbo, Optical anisotropy of TiO2 and MgF2 thin films prepared by glancing angle deposition. J. Korean Phys. Soc. 49, 2136–2142 (2006)

    CAS  Google Scholar 

  56. S. Ahcene, A. Besnard, C. Nouveau, P. Jacquet, Critical angles in DC magnetron glad thin films. Vacuum (2016). https://doi.org/10.1016/j.vacuum.2016.07.012

    Article  Google Scholar 

  57. Y. Tamar, M. Tzabari, C. Haspel, Y. Sasson, Estimation of the porosity and refractive index of sol–gel silica films using high resolution electron microscopy. Sol. Energy Mater. Sol. Cells 130, 246–256 (2014). https://doi.org/10.1016/j.solmat.2014.07.020

    Article  CAS  Google Scholar 

  58. L.G. Daza, R. Castro-Rodríguez, A. Iribarren, AZO nanocolumns grown by GLAD: adjustment of optical and structural properties. Mater. Res. Express 6, 1050b9 (2019)

    Article  CAS  Google Scholar 

  59. D. Abdelkader, F. Chaffar Akkari, N. Khemiri, R. Miloua, F. Antoni, B. Gallas, M. Kanzari, Effect of SnS addition on the morphological and optical properties of (SnS)m(Sb2S3)n nano-rods elaborated by glancing angle deposition. Phys. B Condens. Matter 546, 33–43 (2018). https://doi.org/10.1016/j.physb.2018.05.016

    Article  CAS  Google Scholar 

  60. H. Kwon, S.H. Lee, J.K. Kim, Three-dimensional metal-oxide nanohelix arrays fabricated by oblique angle deposition: fabrication, properties, and applications. Nanoscale Res. Lett. 10, 369 (2015). https://doi.org/10.1186/s11671-015-1057-2

    Article  CAS  Google Scholar 

  61. X. Xiao, G. Dong, C. Xu, H. He, H. Qi, Z. Fan, J. Shao, Structure and optical properties of Nb2O5 sculptured thin films by glancing angle deposition. Appl. Surf. Sci. 255, 2192–2195 (2008). https://doi.org/10.1016/j.apsusc.2008.07.071

    Article  CAS  Google Scholar 

  62. A. Chargui, R. El Beainou, A. Mosset, S. Euphrasie, V. Potin, P. Vairac, N. Martin, Influence of thickness and sputtering pressure on electrical resistivity and elastic wave propagation in oriented columnar tungsten thin films. Nanomaterials 10, 81 (2020). https://doi.org/10.3390/nano10010081

    Article  CAS  Google Scholar 

  63. F. Akkari, K. Mounir, Optical, structural, and electrical properties of Cu2O thin films. Phys. Status Solidi Appl. Res. 207, 1647–1651 (2010). https://doi.org/10.1002/pssa.200983736

    Article  CAS  Google Scholar 

  64. Defects properties and vacancy diffusion in Cu2MgSnS4 (n.d.). https://doi.org/10.1088/1674-4926/43/2/022101. Accessed 25 Apr 2023

  65. S. Mahajan, E. Stathatos, N. Huse, R. Birajdar, A. Kalarakis, R. Sharma, Low cost nanostructure kesterite CZTS thin films for solar cells application. Mater. Lett. 210, 92–96 (2018). https://doi.org/10.1016/j.matlet.2017.09.001

    Article  CAS  Google Scholar 

  66. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  67. A. Sinaoui, F. Akkari, B. Gallas, D. Demaille, K. Mounir, Investigation of growth and characterization of nanostructured CuIn5S8 thin films produced by glancing angle deposition. Thin Solid Films (2015). https://doi.org/10.1016/j.tsf.2015.07.074

    Article  Google Scholar 

  68. G. Bousselmi, N. Khemiri, M. Kanzari, A new route for the synthesis of n-type Ag2ZnSnS4 thin films by thermal vacuum evaporation for solar cell applications. Opt. Mater. 134, 113187 (2022). https://doi.org/10.1016/j.optmat.2022.113187

    Article  CAS  Google Scholar 

  69. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, M. Wuttig, The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. J. Appl. Phys. 101, 074903 (2007). https://doi.org/10.1063/1.2715554

    Article  CAS  Google Scholar 

  70. S. Nacer, D. Jlidi, A. Labidi, F. Akkari, S. Touihri, M. Ali Maaref, Promising ethanol detection enhancement of Cu2O thin film deposited by GLAD technique. Measurement 151, 107208 (2019). https://doi.org/10.1016/j.measurement.2019.107208

    Article  Google Scholar 

  71. V. Collado, N. Martin, P. Pedrosa, J.-Y. Rauch, M. Horakova, M.A.P. Yazdi, A. Billard, Temperature dependence of electrical resistivity in oxidized vanadium films grown by the GLAD technique. Surf. Coat. Technol. 304, 476–485 (2016). https://doi.org/10.1016/j.surfcoat.2016.07.057

    Article  CAS  Google Scholar 

  72. R. El Beainou, A. Chargui, P. Pedrosa, A. Mosset, S. Euphrasie, P. Vairac, N. Martin, Electrical resistivity and elastic wave propagation anisotropy in glancing angle deposited tungsten and gold thin films. Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.01.041

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

CK: Writing. GB: Visualization; Formal analysis. FCA: review. BG: editing. MK: Validation.

Corresponding author

Correspondence to C. Khebir.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khebir, C., Bousselmi, G., Chaffar Akkari, F. et al. Optical and electrical anisotropies in Cu2ZnSnS4 and Cu2MgSnS4 thin films deposited by thermal evaporation at obliquely incident angle. J Mater Sci: Mater Electron 34, 2208 (2023). https://doi.org/10.1007/s10854-023-11509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11509-0

Navigation