Skip to main content
Log in

Spray-pyrolyzed rare-earth dysprosium-doped SnO2 thin films for plausible photocatalytic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rare-earth element dysprosium (Dy)-doped SnO2 plays a crucial role in optoelectronics due to its tunable emission property in the visible region. Using simple spray pyrolysis process, trivalent rare-earth Dy (0–5 wt%) is successfully incorporated into the SnO2 lattice as Dy-doped SnO2 (DTO) thin films. X-ray diffraction measurements indicate that the films are considerably textured. Binding energy and elemental charge state are explored using X-ray photoelectron spectroscopy. Optical transmittance of 88.17% and band gap of 3.99 eV is observed for 2 wt% Dy-doped (DTO2) film. Among all the doped films, DTO2 film shows higher hydrophilicity (contact angle 70.7°) due to higher surface roughness (5.71 nm), which is beneficial for photocatalytic activity. The DTO2 film also shows highest carrier concentration (1.8 × 1019 cm−3) and electrical conductivity (3.19 Scm−1). Although, the electrical sheet resistance of the DTO films is high, it can be fine-tuned by further careful optimization of several deposition and/or doping parameters. It is observed that 2 wt% Dy doping into the SnO2 lattice aids the tunability of its optical and electrical properties according to device requirements. Photocatalytic activity of all the spray-pyrolyzed thin films is investigated by degrading methylene blue (MB) dye. The degradation efficiency is found to be highest for DTO2 film (~ 86% for 240 min) under visible LED light irradiation supported by a defect mediated mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed for this study are included in this published article [and its supplementary information files].

References

  1. P.S.R.M.J.D.A.K. K., S.K. Satheesh, Physical properties of rare earth metal (Gd3+) doped SnO2 thin films prepared by simplified spray pyrolysis technique using nebulizer. Optik  (2019). https://doi.org/10.1016/J.IJLEO.2019.05.093

    Article  Google Scholar 

  2. X. Chen et al., Boosting interfacial charge transfer by constructing rare earth–doped WOx nanorods/SnO2 hybrid electron transport layer for efficient perovskite solar cells. Mater. Today Energy (2021). https://doi.org/10.1016/J.MTENER.2021.100724

    Article  Google Scholar 

  3. T.N.L. Tran, A. Szczurek, A. Lukowiak, A. Chiasera, A review on rare-earth activated SnO2-based photonic structures: Synthesis, fabrication and photoluminescence properties. Opt. Mater. 13, 100140 (2022). https://doi.org/10.1016/J.OMX.2022.100140

    Article  CAS  Google Scholar 

  4. P. Vasudevan, V. Vidyadharan, S.M. Simon, U.N. V, Phytochemical mediated synthesis of ZnO:Dy3+ nanophosphors: Judd–Ofelt analysis, structural and spectroscopic properties. J. Sci.: Adv. Mater. Devices (2020). https://doi.org/10.1016/J.JSAMD.2020.05.001

    Article  Google Scholar 

  5. H.V. Fajardo et al., Influence of rare earth doping on the structural and catalytic properties of nanostructured tin oxide. Nanoscale Res. Lett. 3(5), 194–199 (2008). https://doi.org/10.1007/S11671-008-9135-3/TABLES/2

    Article  CAS  Google Scholar 

  6. K. Zhang, F. Zhu, C.H.A. Huan, A.T.S. Wee, Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method. J. Appl. Phys. 86(2), 974 (1999). https://doi.org/10.1063/1.370834

    Article  CAS  Google Scholar 

  7. R. Chen, G.Z. Xing, J. Gao, Z. Zhang, T. Wu, H.D. Sun, Characteristics of ultraviolet photoluminescence from high quality tin oxide nanowires. Appl. Phys. Lett. 95(6), 061908 (2009). https://doi.org/10.1063/1.3205122

    Article  CAS  Google Scholar 

  8. Q.P. Tran, J.S. Fang, T.S. Chin, Properties of fluorine-doped SnO2 thin films by a green sol–gel method. Mater. Sci. Semicond. Process (2015). https://doi.org/10.1016/J.MSSP.2015.07.047

    Article  Google Scholar 

  9. “Electron configuration for Dysprosium (element 66), Orbital diagram.” https://your-online.ru/en/electronic-formulas/Dy (accessed May 10, 2023)

  10. H. Xu, J. Li, P. Li, J. Shi, X. Gao, Effect of rare earth doping on electronic and gas-sensing properties of SnO2 nanostructures. J. Alloys Compd. 909, 164687 (2022). https://doi.org/10.1016/J.JALLCOM.2022.164687

    Article  CAS  Google Scholar 

  11. K. Bose, R. Kesavan, S. Deepa, Effect of dysprosium doping on the structural and gas sensing properties of SnO2 thin films. AIP Conf. Proc. (2020). https://doi.org/10.1063/5.0017283

    Article  Google Scholar 

  12. S. Sa-nguanprang, A. Phuruangrat, T. Thongtem, S. Thongtem, Characterization and photocatalysis of visible-light-driven Dy-doped ZnO nanoparticles synthesized by tartaric acid-assisted combustion method. Inorg. Chem. Commun. 117, 107944 (2020). https://doi.org/10.1016/J.INOCHE.2020.107944

    Article  CAS  Google Scholar 

  13. S. Bhatia, N. Verma, R. Kumar, Morphologically-dependent photocatalytic and gas sensing application of Dy-doped ZnO nanoparticles. J. Alloys Compd. 726, 1274–1285 (2017). https://doi.org/10.1016/J.JALLCOM.2017.08.048

    Article  CAS  Google Scholar 

  14. E. Radha, D. Komaraiah, J. Sivakumar, Structural, luminescence emission and photocatalytic properties of pure and Dy3+ doped anatase TiO2 nanorods. Mater. Chem. Phys. 297, 127312 (2023). https://doi.org/10.1016/J.MATCHEMPHYS.2023.127312

    Article  CAS  Google Scholar 

  15. S.Y. Janbandhu, S.R. Munishwar, R.S. Gedam, Synthesis, characterization and photocatalytic degradation efficiency of CdS quantum dots embedded in sodium borosilicate glasses. Appl. Surf. Sci. 449, 221–227 (2018). https://doi.org/10.1016/j.apsusc.2018.02.065

    Article  CAS  Google Scholar 

  16. A. Mehtab, J. Ahmed, S.M. Alshehri, Y. Mao, T. Ahmad, Nanotechnology, Nanotechnology (2022). https://doi.org/10.1088/1361-6528/AC43E7

    Article  Google Scholar 

  17. M.A. Almessiere et al., Influence of Dy3+ Ions on the microstructures and magnetic, electrical, and microwave properties of [Ni0.4Cu0.2Zn0.4](Fe2-xDyx)O4(0.00 ≤ x ≤ 0.04) Spinel Ferrites. ACS Omega 6, 10266–10280 (2021). https://doi.org/10.1021/ACSOMEGA.1C00611/ASSET

    Article  CAS  Google Scholar 

  18. T.I. Gandhi, R.R. Babu, K. Ramamurthi, M. Arivanandhan, Effect of Mn doping on the electrical and optical properties of SnO2 thin films deposited by chemical spray pyrolysis technique. Thin Solid Films. 598, 195–203 (2016). https://doi.org/10.1016/j.tsf.2015.12.008

    Article  CAS  Google Scholar 

  19. M. Hatanaka, S. Yabushita, Theoretical study on the f-f transition intensities of lanthanide trihalide systems. J. Phys. Chem. A 113(45), 12615–12625 (2009). https://doi.org/10.1021/JP9049507/ASSET/

    Article  CAS  Google Scholar 

  20. M. Shkir et al., Influence of Dy doping on key linear, nonlinear and optical limiting characteristics of SnO2 films for optoelectronic and laser applications. Opt. Laser Technol. 108, 609–618 (2018). https://doi.org/10.1016/J.OPTLASTEC.2018.07.039

    Article  CAS  Google Scholar 

  21. P. Sruthi et al., Dysprosium concentration-dependent fluorescent properties of antimony lead Oxyfluoroborate glasses. Chem. Phys. Lett. 787, 139210 (2022). https://doi.org/10.1016/J.CPLETT.2021.139210

    Article  CAS  Google Scholar 

  22. B. Rudraswamy, N. Dhananjaya, Photoluminescence properties of gadolinium oxide nanophosphor. IOP Conf. Ser. Mater. Sci. Eng. 40(1), 012034 (2012). https://doi.org/10.1088/1757-899X/40/1/012034

    Article  CAS  Google Scholar 

  23. J. hua Ren, K. wen Li, J. Shen, C. ming Sheng, Y. Huang, Q. Zhang, Effects of rare-earth erbium doping on the electrical performance of tin-oxide thin film transistors. J. Alloys Compd. (2019). https://doi.org/10.1016/J.JALLCOM.2019.03.277

    Article  Google Scholar 

  24. I. Stambolova, K. Konstantinov, S. Vassilev, P. Peshev, T. Tsacheva, Lanthanum doped SnO2 and ZnO thin films sensitive to ethanol and humidity. Mater. Chem. Phys. (2000). https://doi.org/10.1016/S0254-0584(99)00193-5

    Article  Google Scholar 

  25. A. Adjimi et al., Fluorine-doped tin oxide thin films deposition by sol-gel technique. J. Cryst. Process Tech. (2018). https://doi.org/10.4236/jcpt.2018.84006

    Article  Google Scholar 

  26. P. Senthilkumar, S. Raja, R. Ramesh Babu, G. Vasuki et al., Influence of Ru doping on the structural, morphological, opticlectrical and optoelectronic properties of SnO2 thin films. J. Phys.  Chem. Solids (2023). https://doi.org/10.1016/J.JPCS.2022.111177

    Article  Google Scholar 

  27. J.C.R. Aquino, F.F.H. Aragón, D.G. Pacheco-Salazar, J.A.H. Coaquira, Influence of Dy doping on the structural, vibrational, optical, electronic, and magnetic properties of SnO2 nanoparticles. J. Nanopart. Res. 23(4), 1–13 (2020). https://doi.org/10.1007/S11051-021-05187-4/TABLES/5

    Article  Google Scholar 

  28. F.I. Shaikh, L.P. Chikhale, D.Y. Nadargi, I.S. Mulla, S.S. Suryavanshi, Structural, optical and ethanol sensing properties of Dy-doped SnO2 nanoparticles. J. Electron Mater. (2018). https://doi.org/10.1007/S11664-018-6254-1/METRICS

    Article  Google Scholar 

  29. J. Joseph, V. Mathew, K.E. Abraham, Physical properties of Dy and La doped SnO2 thin films prepared by a cost effective vapour deposition technique. Cryst. Res. Technol. (2006). https://doi.org/10.1002/CRAT.200610714

    Article  Google Scholar 

  30. F. Gu et al., Preparation and luminescence characteristics of nanocrystalline SnO2 particles doped with Dy3+. J. Cryst. Growth (2003). https://doi.org/10.1016/S0022-0248(03)01294-6

    Article  Google Scholar 

  31. D.B. Potter, I.P. Parkin, C.J. Carmalt, The effect of solvent on Al-doped ZnO thin films deposited via aerosol assisted CVD. RSC Adv. (2018). https://doi.org/10.1039/C8RA06417B

    Article  Google Scholar 

  32. D.P. Joseph et al., Lithium-antimony co-doping induced morphology transition in spray deposited SnO2 thin films. Surf. Interfaces 23, 100918 (2021). https://doi.org/10.1016/J.SURFIN.2020.100918

    Article  CAS  Google Scholar 

  33. D.L. Kamble, N.S. Harale, V.L. Patil, P.S. Patil, L.D. Kadam, Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films. J. Anal. Appl. Pyrolysis. 127(2), 38–46 (2017). https://doi.org/10.1016/j.jaap.2017.09.004

    Article  CAS  Google Scholar 

  34. R. Ramarajan et al., Boltzmann conductivity approach for charge transport in spray-deposited transparent Ta-doped SnO2 thin films. J. Alloys Compd. 897, 163159 (2022). https://doi.org/10.1016/J.JALLCOM.2021.163159

    Article  CAS  Google Scholar 

  35. M. Jothibas, C. Manoharan, S. Johnson Jeyakumar, P. Praveen, I. Kartharinal Punithavathy, J.P. Richard, Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Sol. Energy 159, 434–443 (2018). https://doi.org/10.1016/j.solener.2017.10.055

    Article  CAS  Google Scholar 

  36. A. Rahal, A. Benhaoua, M. Jlassi, B. Benhaoua, Structural, optical and electrical properties studies of ultrasonically deposited tin oxide (SnO2) thin films with different substrate temperatures. Superlattices Microstruct. (2015). https://doi.org/10.1016/J.SPMI.2015.08.003

    Article  Google Scholar 

  37. G. Turgut, A. Part, Effect of Ta doping on the characteristic features of spray-coated SnO2. Thin Solid Films (2015). https://doi.org/10.1016/J.TSF.2015.10.011

    Article  Google Scholar 

  38. G.E. Fidha et al., Physical and photocatalytic properties of sprayed Dy doped ZnO thin films under sunlight irradiation for degrading methylene blue. RSC Adv. (2021). https://doi.org/10.1039/D1RA03967A

    Article  Google Scholar 

  39. R.N. Wenzel, Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936)

    Article  CAS  Google Scholar 

  40. C. Li, J. Zhang, J. Han, B. Yao, A numerical solution to the effects of surface roughness on water–coal contact angle. Sci. Rep.  11(1), 1 (2021). https://doi.org/10.1038/s41598-020-80729-9

    Article  CAS  Google Scholar 

  41. F. Alshammari et al., Atomic-layer‐deposited SnO2 as gate electrode for indium‐free transparent electronics. Advanced Electron Mater. (2017). https://doi.org/10.1002/aelm.201700155

    Article  Google Scholar 

  42. D.N. Huh et al., High-resolution X-ray photoelectron spectroscopy of organometallic (C5H4SiMe3)3LnIII and [(C5H4SiMe3)3LnII]1-complexes (Ln = Sm, Eu, Gd, Tb). J. Am. Chem. Soc. 143, 16610–16620 (2021). https://doi.org/10.1021/JACS.1C06980/ASSET

    Article  CAS  Google Scholar 

  43. A.I. Martínez, L. Huerta, J.M. O-Rueda De, D. León, O. Acosta, Malik, M. Aguilar, Physicochemical characteristics of fluorine doped tin oxide films. J. Phys. D Appl. Phys. 39(23), 5091 (2006). https://doi.org/10.1088/0022-3727/39/23/029

    Article  CAS  Google Scholar 

  44. S. Wenmackers et al., Head-on immobilization of DNA fragments on CVD-diamond layers. Mater. Sci. Forum (2005). https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.492-493.267

    Article  Google Scholar 

  45. D.P. Joseph et al., Investigation of the transparent conducting properties of spray-pyrolyzed Li and F co-doped SnO2 thin film electrodes. J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06330-6

    Article  Google Scholar 

  46. D.F. Swineharf, E. The, B.-L. Law, The Beer-Lambert Law. J. Chem. Educ. 39(7), 333–335 (1962). https://doi.org/10.1021/ED039P333

    Article  Google Scholar 

  47. Manju et al., Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-74436-8

    Article  Google Scholar 

  48. S.U. Awan, S.K. Hasanain, G. Hassnain Jaffari, D.H. Anjum, U.S. Qurashi, Defects induced luminescence and tuning of bandgap energy narrowing in ZnO nanoparticles doped with Li ions. J. Appl. Phys. 116(8), 083510 (2014). https://doi.org/10.1063/1.4894153

    Article  CAS  Google Scholar 

  49. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Sensing properties of sprayed antimony doped tin oxide thin films: solution molarity. J. Alloys Compd. 509(6), 3108–3115 (2011). https://doi.org/10.1016/j.jallcom.2010.12.012

    Article  CAS  Google Scholar 

  50. T.W. Kim, D.U. Lee, Y.S. Yoon, Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices. J. Appl. Phys. 88(6), 3759–3761 (2000). https://doi.org/10.1063/1.1288021

    Article  CAS  Google Scholar 

  51. D. Calestani, L. Lazzarini, G. Salviati, M. Zha, Morphological, structural and optical study of quasi-1D SnO2 nanowires and nanobelts. Cryst. Res Technol.: J. Exp. Ind. Crystallogr. 941(10), 937–941 (2005). https://doi.org/10.1002/crat.200410463

    Article  CAS  Google Scholar 

  52. S. Bansal, D.K. Pandya, S.C. Kashyap, D. Haranath, Growth ambient dependence of defects, structural disorder and photoluminescence in SnO2 films deposited by reactive magnetron sputtering. J. Alloys Compd. 583, 186–190 (2014). https://doi.org/10.1016/j.jallcom.2013.08.135

    Article  CAS  Google Scholar 

  53. H. Sefardjella, B. Boudjema, A. Kabir, G. Schmerber, Structural and photoluminescence properties of SnO2 obtained by thermal oxidation of evaporated Sn thin films. Curr. Appl. Phys. (2013). https://doi.org/10.1016/J.CAP.2013.08.017

    Article  Google Scholar 

  54. E.R. Schütz et al., Reduced defect density in crystalline halide perovskite films via methylamine treatment for the application in photodetectors. APL Mater. (2022). https://doi.org/10.1063/5.0093333/2835052

    Article  Google Scholar 

  55. H. Kim, A. Piqué, Transparent conducting Sb-doped SnO 2 thin films grown by pulsed-laser deposition. Appl. Phys. Lett. 84(2), 218–220 (2004). https://doi.org/10.1063/1.1639515

    Article  CAS  Google Scholar 

  56. A.A. Alsac, A. Yildiz, T. Serin, N. Serin, Improved conductivity of Sb-doped SnO2thin films. J. Appl. Phys. 113(6), 1–5 (2013). https://doi.org/10.1063/1.4790879

    Article  CAS  Google Scholar 

  57. J.M. Fernandes et al., Effect of anionic bromine doping on the structural, optical and electrical properties of spray-pyrolyzed SnO2 thin films. Mater. Sci. Eng.: B 282, 115756 (2022). https://doi.org/10.1016/J.MSEB.2022.115756

    Article  CAS  Google Scholar 

  58. D.H. Zhang, H.L. Ma, Scattering mechanisms of charge carriers in transparent conducting oxide films. App. Phys. A: Mater. Sci. Proc. 62(5), 487–492 (1996)

    Article  Google Scholar 

  59. K. Naeem, F. Ouyang, Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light. Phys. B Condens Matter 405(1), 221–226 (2010). https://doi.org/10.1016/J.PHYSB.2009.08.060

    Article  CAS  Google Scholar 

  60. Y..H.. Xu, D..H.. Liang, D..Z.. Liu, Preparation and characterization of Cu2O-TiO2: Efficient photocatalytic degradation of methylene blue. Mater. Res. Bull (2008). https://doi.org/10.1016/J.MATERRESBULL.2008.01.026

    Article  Google Scholar 

  61. O. ¨ Kerkez, I. ˙ Boz, Efficient removal of methylene blue by photocatalytic degradation with TiO 2 nanorod array thin films O ¨ zge Kerkez • I ˙ Smail Boz. Reac Kinet Mech Cat. 110, 543–557 (2013). https://doi.org/10.1007/s11144-013-0616-8

    Article  CAS  Google Scholar 

  62. S.Y. Janbandhu, U. Patra, G.K. Sukhadeve, R. Kumar, R.S. Gedam, Photocatalytic performance of glasses embedded with Ag-TiO2 quantum dots on photodegradation of indigo carmine and eosin Y dyes in sunlight. Inorg. Chem. Commun. 148, 110317 (2023). https://doi.org/10.1016/j.inoche.2022.110317

    Article  CAS  Google Scholar 

  63. A. Mohan et al., Hybrid photo-and Thermal Catalyst System for continuous CO2Reduction. ACS Appl. Mater. Interfaces. 12(30), 33613–33620 (2020). https://doi.org/10.1021/acsami.0c06232

    Article  CAS  Google Scholar 

  64. J. Divya, N.J. Shivaramu, W.D. Roos, W. Purcell, H.C. Swart, Synthesis, surface and photoluminescence properties of Sm3 + doped α-Bi2O3. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.157221

    Article  Google Scholar 

  65. S.Y. Janbandhu, S.R. Munishwar, G.K. Sukhadeve, R.S. Gedam, Effect of annealing time on optical properties of CdS QDs containing glasses and their application for degradation of methyl orange dye. Mater. Charact. 152, 230–238 (2019). https://doi.org/10.1016/j.matchar.2019.04.027

    Article  CAS  Google Scholar 

  66. J. Wang, S. Wang, Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.126158

    Article  Google Scholar 

  67. R. Lin et al., Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: Insight into the crystal facet effect in photocatalysis. J. Am. Chem. Soc. 140(29), 9078–9082 (2018). https://doi.org/10.1021/JACS.8B05293/ASSET

    Article  CAS  Google Scholar 

  68. Y. Xiong, Y. Lin, X. Wang, Y. Zhao, J. Tian, Defect engineering on SnO2 nanomaterials for enhanced gas sensing performances.  Adv. Powder Mater. (2022). https://doi.org/10.1016/j.apmate.2022.02.001

    Article  Google Scholar 

  69. S.Y. Janbandhu, A. Joshi, S.R. Munishwar, R.S. Gedam, CdS/TiO2 heterojunction in glass matrix: synthesis, characterization, and application as an improved photocatalyst. Appl. Surf. Sci. 497, 143758 (2019). https://doi.org/10.1016/j.apsusc.2019.143758

    Article  CAS  Google Scholar 

  70. T.M. Wang, S.K. Zheng, W.C. Hao, C. Wang, Studies on photocatalytic activity and transmittance spectra of TiO2 thin films prepared by r.f. Magnetron sputtering method. Surf. Coat. Technol. 155(2), 141–145 (2002). https://doi.org/10.1016/S0257-8972(02)00004-X

    Article  CAS  Google Scholar 

  71. J.. Du, Effect of hydroxyl groups on hydrophilic and photocatalytic activities of rare earth doped titanium dioxide thin films. J. Rare Earths 33(2), 148–153 (2015). https://doi.org/10.1016/S1002-0721(14)60395-1

    Article  CAS  Google Scholar 

  72. A.B. Ali Baig, V. Rathinam, J. Palaninathan, Photodegradation activity of yttrium-doped SnO2 nanoparticles against methylene blue dye and antibacterial effects. Appl. Water Sci. 10(2), 76 (2020). https://doi.org/10.1007/s13201-020-1143-1

    Article  CAS  Google Scholar 

Download references

Funding

This work is not funded by any agency.

Author information

Authors and Affiliations

Authors

Contributions

DPJ and MK: Conceptualization, formal analysis, supervision, validation; CV: Review, funding and resources, validation; JMF and RM: Planning, investigation, acquisition, analysis, original draft, review & editing; GM, SYJ, YJ and SS: Acquisition, review & editing, methodology, investigation, data curation, formal analysis, software.

Corresponding authors

Correspondence to M. Kovendhan or D. Paul Joseph.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 540.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, J.M., Muniramaiah, R., Maharana, G. et al. Spray-pyrolyzed rare-earth dysprosium-doped SnO2 thin films for plausible photocatalytic application. J Mater Sci: Mater Electron 34, 2131 (2023). https://doi.org/10.1007/s10854-023-11459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11459-7

Navigation