Skip to main content
Log in

Comprehensive investigation of microstructure, electrical and photocatalytic properties of \({\text{K}}_{{{\text{0}}{\text{.5}}}} {\text{Na}}_{{{\text{0}}{\text{.5}}}} {\text{NbO}}_{{\text{3}}}\) lead- free ceramics prepared via different synthesis routes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The comprehensive study on the impact of different synthesis techniques on the structural, electrical, and photocatalytic properties of perovskite ferroelectric ceramics \({\text{K}}_{0.5}{\text{N}\text{a}}_{0.5}{\text{N}\text{b}\text{O}}_{3}\)(KNN). The solid-state reaction and hydrothermal methods are used to prepare the KNN ceramics, and the effects of grain size on the physical characteristics these ceramics are examined. The KNN-S prepared by solid-state method have significantly larger grain size as compared to that for KNN-H prepared by hydrothermal method. Furthermore, the KNN-S is found to exhibit higher dielectric, piezoelectric and ferroelectric properties as compared to KNN-H. On the other hand, the increased photocatalytic activity is observed in KNN-H as compared to KNN-S. As compared to the hydrothermal synthesis, the solid-state synthesis causes an increase in the relative dielectric permittivity \(\left({\epsilon }^{{\prime }}\right)\) from 2394 to 3286, remnant polarization \(\left({P}_{r}\right)\) from 15.38 to 20.41 \({\upmu }\)C/\({\text{c}\text{m}}^{2}\), planer electromechanical coupling factor \(\left({k}_{p}\right)\) from 0.19 to 0.28 and piezoelectric coefficient \(\left({d}_{33}\right)\) from 88 to 125 pC/N. The KNN-S ceramics are also found to have a lower leakage current density, and higher grain resistance than KNN-H ceramic. The enhanced photocatalytic activity of KNN-H is attributed to relatively smaller particle sizes. The KNN-S and KNN-H samples are found to have degradation efficiencies of RhB solution of 20% and 65%, respectively. The study highlights the importance of synthesis methods and how these can be exploited to tailor the dielectric, piezoelectric and photocatalytic properties of KNN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.013

    Article  CAS  Google Scholar 

  2. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature. 432, 2 (2004). https://doi.org/10.1038/nature03028

  3. M.D. Maeder, D. Damjanovic, N. Setter, J Electroceram. 13, 385 (2004)

    Article  CAS  Google Scholar 

  4. J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559 (2015)

    Article  CAS  Google Scholar 

  5. Y.J. Dai, X.W. Zhang, K.P. Chen, Appl. Phys. Lett. 94, 3 (2009)

    Google Scholar 

  6. J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, J. Am. Ceram. Soc. 96, 3677 (2013). https://doi.org/10.1111/jace.12715

  7. P. Kumar, M. Pattanaik, Sonia, Ceram. Int. 39, 65 (2013)

    Article  CAS  Google Scholar 

  8. J. Fuentes, J. Portelles, A. Pérez, M.D. Durruthy-Rodríguez, C. Ostos, O. Raymond, J. Heiras, M.P. Cruz, J.M. Siqueiros, Appl. Phys. A Mater. Sci. Process. 107, 733 (2012)

    Article  CAS  Google Scholar 

  9. S. Domingo, D. Nacional, R. Dominicana, J. Adv. Ceram. 9, 329 (2020)

    Article  Google Scholar 

  10. U. Shanker, M. Rani, V. Jassal, Environ. Chem. Lett. 15, 623 (2017)

    Article  CAS  Google Scholar 

  11. V.S. Kujur, R. Gaur, V. Gupta, S. Singh, J. Phys. Chem. Solids. 167, 110751 (2022)

    Article  CAS  Google Scholar 

  12. D. Gümüş, F. Akbal, Water. Air. Soil Pollut. 216, 117 (2011)

    Article  Google Scholar 

  13. Y. Cui, J. Briscoe, S. Dunn, D. Meier, G. Viola, R. McKinnon, V. Koval, A. Adomkevicius, S. Dunn, H. Yan, D.H. Yoon, L. Ju, X. Tan, X. Mao, Y. Gu, S. Smith, A. Du, Z. Chen, C. Chen, L. Kou, D. Meier, O. Matar, G. Viola, R. McKinnon, V. Koval, A. Adomkevicius, S. Dunn, H. Yan, S. Banerjee, A. Kakekhani, R.B. Wexler, A.M. Rappe, Nat. Commun. 118, 1 (2021)

    Google Scholar 

  14. P. Senthilkumar, D.A. Jency, T. Kavinkumar, D. Dhayanithi, S. Dhanuskodi, M. Umadevi, S. Manivannan, N.V. Giridharan, V. Thiagarajan, M. Sriramkumar, K. Jothivenkatachalam, ACS Sustain. Chem. Eng. 7, 12032 (2019)

    CAS  Google Scholar 

  15. S. Zhang, B. Zhang, D. Chen, Z. Guo, M. Ruan, Z. Liu, Nano Energy. 79, 105485 (2021)

    Article  CAS  Google Scholar 

  16. M. Stock, S. Dunn, J. Phys. Chem. C 116, 20854 (2012). https://doi.org/10.1021/jp305217z

    Article  CAS  Google Scholar 

  17. Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Phys. Rev. B - Condens. Matter Mater. Phys. 70, 1 (2004)

    Google Scholar 

  18. G. Cilaveni, K.V. Ashok Kumar, S.S.K. Raavi, C. Subrahmanyam, S. Asthana, J. Alloys Compd. 798, 540 (2019)

    Article  CAS  Google Scholar 

  19. L. Curecheriu, S.B. Balmus, M.T. Buscaglia, V. Buscaglia, A. Ianculescu, L. Mitoseriu, J. Am. Ceram. Soc. 95, 3912 (2012)

    Article  CAS  Google Scholar 

  20. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Article  CAS  Google Scholar 

  21. H. Birol, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 26, 861 (2006)

    Article  CAS  Google Scholar 

  22. L. EGERTON, D.M. DILLON, J. Am. Ceram. Soc. 42, 438 (1959)

    Article  CAS  Google Scholar 

  23. Y. Zhou, J. Yu, M. Guo, M. Zhang, Ferroelectrics. 404, 69 (2010)

    Article  CAS  Google Scholar 

  24. N. Zhang, A.M. Glazer, D. Baker, P.A. Thomas, Acta Crystallogr. Sect. A Found. Crystallogr. 63, s184 (2007)

    Article  Google Scholar 

  25. Y. Zhuang, Z. Xu, F. Li, Z. Liao, W. Liu, J. Alloys Compd. 629, 113 (2015)

    Article  CAS  Google Scholar 

  26. Hl. CHENG, J. XIAO, P. GAO, Yy. YAN, Sp. GAO, Hl. DU, Trans. Nonferrous Met. Soc. China. 28, 1801 (2018). https://doi.org/10.1016/S1003-6326(18)64824-1

  27. S. Toyama, H. Hayashi, M. Takesue, M. Watanabe, R.L. Smith, J. Supercrit Fluids. 107, 1 (2016)

    Article  CAS  Google Scholar 

  28. G. Stavber, B. Malič, M. Kosec, Green. Chem. 13, 1303 (2011)

    Article  CAS  Google Scholar 

  29. Y. long Su, X. Chen, Z. de Yu, H. Lian, D. di Zheng, J. Peng, J. Mater. Sci. 52, 2934 (2017)

  30. M. Alam, S. Khilari, K. Jai, Shree, D. Das, AIP Conf. Proc. 2265, 0 (2020)

  31. E. Buixaderas, V. Bovtun, M. Kempa, M. Savinov, D. Nuzhnyy, F. Kadlec, P. Vaněk, J. Petzelt, M. Eriksson, Z. Shen, J. Appl. Phys. 107, 014111 (2010)

    Article  Google Scholar 

  32. M. Eriksson, H. Yan, G. Viola, H. Ning, D. Gruner, M. Nygren, M.J. Reece, Z. Shen, J. Am. Ceram. Soc. 94, 3391 (2011)

    Article  CAS  Google Scholar 

  33. S. Huo, S. Yuan, Z. Tian, C. Wang, Y. Qiu, J. Am. Ceram. Soc. 95, 1383 (2012)

    Article  CAS  Google Scholar 

  34. W. Yang, P. Li, S. Wu, F. Li, B. Shen, J. Zhai, Adv. Electron. Mater. 5, 1 (2019)

    Google Scholar 

  35. H. Gu, K. Zhu, X. Pang, B. Shao, J. Qiu, H. Ji, Ceram. Int. 38, 1807 (2012)

    Article  CAS  Google Scholar 

  36. R.E. JAEGER, L. EGERTON, J. Am. Ceram. Soc. 45, 209 (1962)

    Article  CAS  Google Scholar 

  37. R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki, M. Itoh, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 41, 7119 (2002)

  38. X. Vendrell, J.E. García, X. Bril, D.A. Ochoa, L. Mestres, G. Dezanneau, J. Eur. Ceram. Soc. 35, 125 (2015)

    Article  CAS  Google Scholar 

  39. Y. Zhen, J.F. Li, J. Am. Ceram. Soc. 89, 3669 (2006)

    Article  CAS  Google Scholar 

  40. K. Wang, J.F. Li, Appl. Phys. Lett. 91, 2005 (2007)

    Google Scholar 

  41. S. Dwivedi, T. Pareek, S. Kumar, RSC Adv. 8, 24286 (2018)

    Article  CAS  Google Scholar 

  42. T.A. Skidmore, S.J. Milne, J. Mater. Res. 22, 2265 (2007)

    Article  CAS  Google Scholar 

  43. P. Bomlai, P. Wichianrat, S. Muensit, S.J. Milne, J. Am. Ceram. Soc. 90, 1650 (2007)

    Article  CAS  Google Scholar 

  44. B.P. Zhang, J.F. Li, K. Wang, H. Zhang, J. Am. Ceram. Soc. 89, 1605 (2006)

    Article  CAS  Google Scholar 

  45. R. Rani, S. Sharma, M. Quaglio, R. Rai, S. Bianco, D. Pugliese, C.F. Pirri, Mater. Sci. Appl. 08, 247 (2017)

    CAS  Google Scholar 

  46. A. Le Bali, Adv. X-ray Anal. 42, 191 (2000)

  47. M. Kosec, B. Malič, A. Benčan, T. Rojac, Piezoelectric Acoust. Mater. Transducer Appl. 81 (2008)

  48. X. Wang, X. Lou, W. Geng, Y. Yao, T. Tao, B. Liang, S.G. Lu, J. Appl. Phys. 130, 1ENG (2021)

    Google Scholar 

  49. W. Ge, Y. Ren, J. Zhang, C.P. Devreugd, J. Li, D. Viehland, J. Appl. Phys. 111, 103503 (2012)

    Article  Google Scholar 

  50. H.E. Mgbemere, M. Hinterstein, G.A. Schneider, J. Appl. Crystallogr. 44, 1080 (2011)

    Article  CAS  Google Scholar 

  51. B. Tah, S. Goswami, T. Dasgupta, J. Bera, P. Sinha, D. Kundu, S. Sen, A. Sen, Ferroelectrics. 481, 119 (2015)

    Article  CAS  Google Scholar 

  52. M. Kosec, D. Kolar, Mater. Res. Bull. 10, 335 (1975)

    Article  CAS  Google Scholar 

  53. C. Huang, M.F. Becker, J.W. Keto, D. Kovar, J. Appl. Phys. 102, 054308 (2007). https://doi.org/10.1063/1.2776163

  54. Y. Guo, K.I. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)

    Article  CAS  Google Scholar 

  55. M. Eriksson, H. Yan, M. Nygren, M.J. Reece, Z. Shen, J. Mater. Res. 25, 240 (2010)

    Article  CAS  Google Scholar 

  56. G.A. Samara, Phys. Rev. 151, 378 (1966)

    Article  CAS  Google Scholar 

  57. J.C. Woolley, J. Mech. Phys. Solid. 6, 83 (1957)

  58. B.Y.R.D. Shannon, M.H.N.H. Baur, O.H. Gibbs, M. Eu, V. Cu, (1976)

  59. C.W. Cho, M.R. Cha, J.Y. Jang, S.H. Lee, D.J. Kim, S. Park, J.S. Bae, S.D. Bu, S. Lee, J. Huh, Curr. Appl. Phys. 12, 1266 (2012). https://doi.org/10.1016/j.cap.2012.03.006

    Article  Google Scholar 

  60. K. Uchino, S. Nomura, Ferroelectrics. 44, 55 (1982)

    Article  CAS  Google Scholar 

  61. D. Lin, K.W. Kwok, H.L.W. Chan, J. Appl. Phys. 106, 10 (2009)

    Google Scholar 

  62. Z. Liu, H. Fan, C. Long, J. Mater. Sci. 49, 8107 (2014)

    Article  CAS  Google Scholar 

  63. Z. Pan, J. Chen, L. Fan, J. Zhang, S. Zhang, Y. Huang, L. Liu, L. Fang, X. Xing, J. Am. Ceram. Soc. 98, 3935 (2015)

    Article  CAS  Google Scholar 

  64. V.R. Mudinepalli, L. Feng, W.C. Lin, B.S. Murty, J. Adv. Ceram. 4, 46 (2015)

    Article  CAS  Google Scholar 

  65. C.C. Leu, C.Y. Chen, C.H. Chien, M.N. Chang, F.Y. Hsu, C.T. Hu, Appl. Phys. Lett. 82, 3493 (2003)

    Article  CAS  Google Scholar 

  66. J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, J. Eur. Ceram. Soc. 35, 1785 (2015)

    Article  CAS  Google Scholar 

  67. S. Kumar, M. Shandilya, S. Thakur, N. Thakur, J. Sol-Gel Sci. Technol. 88, 646 (2018)

    Article  CAS  Google Scholar 

  68. N. Panda, B.N. Parida, R. Padhee, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 26, 3797 (2015)

    Article  CAS  Google Scholar 

  69. A. Kumar, T.D. Rao, V.S. Katta, S.S. Kumar, Raavi, S. Asthana, Phys. B Condens. Matter. 639, 413926 (2022)

    Article  CAS  Google Scholar 

  70. P. Palei, P. Kumar, J. Adv. Dielectrics. 1, 351 (2011). https://doi.org/10.1142/S2010135X11000446

  71. S.H. Yoon, C.A. Randall, K.H. Hur, J. Am. Ceram. Soc. 92, 1758 (2009)

    Article  CAS  Google Scholar 

  72. B.N. Parida, N. Panda, R. Padhee, P.R. Das, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 1824 (2017)

    Article  CAS  Google Scholar 

  73. Y. Zhai, Y. Feng, J. Du, J. Xue, J. Shen, Y. Lu, T. Lu, P. Fu, W. Li, J. Hao, Z. Xu, J. Mater. Sci. Mater. Electron. 30, 4352 (2019)

    Article  CAS  Google Scholar 

  74. D. Triyono, S.N. Fitria, U. Hanifah, RSC Adv. 10, 18323 (2020)

    Article  CAS  Google Scholar 

  75. M.W. Barsoum, Fundamentals of Ceramics, vol 4 (Institute of Physics, Bristol, UK, 2003)

  76. K. Saenkam, P. Jaita, S. Sirisoonthorn, T. Tunkasiri, G. Rujijangul, ScienceAsia. 47, 34 (2021)

    Article  CAS  Google Scholar 

  77. K. Uchino, Ferroelectric Devices, 2nd edn. (CRC Press, UK, 2009)

  78. S.E. Park, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44, 1140 (1997)

    Article  Google Scholar 

  79. H. Li, Y. Hao, Z. Lin, X. He, J. Cai, X. Gong, Y. Gu, R. Zhang, H. Cheng, B. Zhang, Solid State Commun. 353, 114871 (2022)

    Article  CAS  Google Scholar 

  80. I. Mahmud, M.S. Yoon, S.C. Ur, Appl. Sci. 7, 7 (2017)

    Google Scholar 

  81. A. Sati, V. Mishra, A. Kumar, M.K. Warshi, A. Sagdeo, R. Kumar, P.R. Sagdeo, J. Mater. Sci. Mater. Electron. 30, 9498 (2019)

    Article  CAS  Google Scholar 

  82. Z. Liu, H. Fan, Y. Zhao, G. Dong, J. Am. Ceram. Soc. 99, 146 (2016)

    Article  CAS  Google Scholar 

  83. Z. Wang, H. Gu, Y. Hu, K. Yang, M. Hu, D. Zhou, J. Guan, CrystEngComm 12, 3157 (2010)

    Article  CAS  Google Scholar 

  84. H. Shimizu, K. Kobayashi, Y. Mizuno, C.A. Randall, J. Am. Ceram. Soc. 97, 1791 (2014)

    Article  CAS  Google Scholar 

  85. A. Redinger, S. Siebentritt, Copp. Zinc tin sulfide-based Thin-Film Sol. Cells. 627, 363 (2015)

    Google Scholar 

  86. G.C. Park, T.Y. Seo, C.H. Park, J.H. Lim, J. Joo, Ind. Eng. Chem. Res. 56, 8235 (2017)

    Article  CAS  Google Scholar 

  87. B. Li, H. Cao, J. Mater. Chem. 21, 3346 (2011)

    Article  CAS  Google Scholar 

  88. A. Ahlawat, P.S. Rana, P.R. Solanki, Mater. Lett. 305, 130830 (2021)

    Article  CAS  Google Scholar 

  89. Z. Zhang, C.C. Wang, R. Zakaria, J.Y. Ying, J. Phys. Chem. B. 102, 10871 (1998). https://doi.org/10.1021/jp982948+

    Article  CAS  Google Scholar 

  90. T.K. Dhiman, S. Singh, Phys. Status Solidi Appl. Mater. Sci. 216, 1 (2019)

    Google Scholar 

Download references

Funding

This work was supported by UGC-DAE (CRS/2021–22/03/553), and DST-SERB (CRG/ 2020/ 001509). Author S.A has received research support from UGC-DAE and DST-SERB, India to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

MS Synthesis, Investigation, Formal analysis, Writing Original draft. SA Conceptualization, Resource, Visualization, Supervision, Writing-review and editing, Project Administrator. MKN Conceptualization, Resource; Visualization, Supervision, Writing-review and editing, Project Administrator. PPC Resource; Visualization, Writing-review and editing. ChS Conceptualization, Resource; Visualization, Writing-review and editing.

Corresponding authors

Correspondence to Manish K. Niranjan or Saket Asthana.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 441.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, M., Cho, P.P., Subrahmanyam, C. et al. Comprehensive investigation of microstructure, electrical and photocatalytic properties of \({\text{K}}_{{{\text{0}}{\text{.5}}}} {\text{Na}}_{{{\text{0}}{\text{.5}}}} {\text{NbO}}_{{\text{3}}}\) lead- free ceramics prepared via different synthesis routes. J Mater Sci: Mater Electron 34, 2214 (2023). https://doi.org/10.1007/s10854-023-11437-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11437-z

Navigation