Skip to main content
Log in

Effect of deposition potential and time substitution for Co(OH)2 on controlled synthesis and electrochemical performance for electrochemical supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Interconnected nanoflakes of cobalt hydroxide Co(OH)2 were deposited potentiostatically on nickel mesh (NM) at various potentials (− 0.9 V, − 1.0 V, − 1.1 V) and various times (1 min, 2 min, 3 min, 4 min, and 5 min). The FE-SEM, XRD, FT-IR, and EDS etc. studied the morphological and structural properties. The electrochemical properties evaluated in 1 M KOH electrolyte using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques. The Co(OH)2 nanoflakes deposited on nickel mesh with − 1.0 V for 5 min. electrode exhibits a good specific capacitance of 1035 F g−1, at a current density of 1 mA cm−2 1 M KOH electrolyte. In conclusion, the deposition potential and the deposition time affect the surface morphology and the electrochemical performance of the deposited Co(OH)2 electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

We strive to make our research data accessible to other researchers, subject to any legal, ethical, or privacy restrictions that may apply. We will respond promptly to ensure appropriate access to the data.

References

  1. B. Xu, H. Zhang, H. Mei, D. Sun, Recent progress in metal-organic framework-based supercapacitor electrode materials. Coordin. Chem. Rev. 420, 213438 (2020). https://doi.org/10.1016/j.ccr.2020.213438

    Article  CAS  Google Scholar 

  2. F.B. Ajdari, E. Kowsari, M. Niknam Shahrak, A. Ehsani, Z. Kiaei, H. Torkzaban, M. Ershadi, S. Kholghi Eshkalak, V. Haddadi-Asl, A. Chinnappan, S. Ramakrishna, A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coordin. Chem. Rev. 422, 213441 (2020). https://doi.org/10.1016/j.ccr.2020.213441

    Article  CAS  Google Scholar 

  3. L. Yaqoob, T. Noor, N. Iqbal, An overview of supercapacitors electrode materials based on metal organic frameworks and future perspectives. Int. J. Energy Res. 46, 3939–3982 (2021). https://doi.org/10.1002/er.7491

    Article  CAS  Google Scholar 

  4. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)

    Article  CAS  Google Scholar 

  5. X. Yi, H. Sun, N. Robertson, C. Kirk, Nanoflower Ni(OH)2 grown in situ on Ni foam for high-performance supercapacitor electrode materials. Sustain. Energy Fuels 5, 5236 (2021). https://doi.org/10.1039/D1SE01036K

    Article  CAS  Google Scholar 

  6. S.D. Dhas, P.S. Maldar, M.D. Patil, A.B. Nagare, M.R. Waikar, R.G. Sonkawade, A.V. Moholkar, Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode material. Vacuum 181, 109646 (2020). https://doi.org/10.1016/j.vacuum.2020.109646

    Article  CAS  Google Scholar 

  7. R. Wang, X. Yan, J. Lang, Z. Zhengm, P. Zhang, A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. J. Mater. Chem. A 2, 12724–12732 (2014). https://doi.org/10.1039/C4TA01296H

    Article  CAS  Google Scholar 

  8. C. Park, J. Hwang, Y. Hwang, C. Song, S. Ahn, H.S. Kim, H. Ahn, Intense pulsed white light assisted fabrication of Co–CoOx core–shell nanoflakes on graphite felt for flexible hybrid supercapacitors. Electrochim. Acta 246, 757–765 (2017). https://doi.org/10.1016/j.electacta.2017.06.087

    Article  CAS  Google Scholar 

  9. T.-F. Yi, J. Mei, B. Guan, P. Cui, S. Luo, Y. Xie, Y. Liu, Construction of spherical NiO@MnO2 with core-shell structure obtained by depositing MnO2 nanoparticles on NiO nanosheets for high-performance supercapacitor. Ceram. Int. 46, 421–429 (2020). https://doi.org/10.1016/j.ceramint.2019.08.278

    Article  CAS  Google Scholar 

  10. Q. Zhou, J. Xing, Y. Gao, X. Lv, Y. He, Z. Guo, Y. Li, Ordered assembly of NiCo2O4 multiple hierarchical structures for high-performance pseudocapacitors. ACS Appl. Mater. Interfaces 6, 11394–11402 (2014). https://doi.org/10.1021/am501988s

    Article  CAS  Google Scholar 

  11. Z.-S. Wu, D.-W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.-M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20, 3595–3602 (2010). https://doi.org/10.1002/adfm.201001054

    Article  CAS  Google Scholar 

  12. N. Wang, J. He, K. Wang, Y. Zhao, T. Jiu, C. Huang, Y. Li, Graphdiyne-based materials: preparation and application for electrochemical energy storage. Adv. Mater. 31, 1803202 (2019). https://doi.org/10.1002/adma.201803202

    Article  CAS  Google Scholar 

  13. L. Miao, Z. Song, D. Zhu, L. Li, L. Gan, M. Liu, Recent advances in carbon-based supercapacitors. Mater. Adv. 1, 945–966 (2020). https://doi.org/10.1039/D0MA00384K

    Article  CAS  Google Scholar 

  14. S. Bhattacharya, I. Roy, A. Tice, C. Chapman, R. Udangawa, V. Chakrapani, J.L. Plawsky, R.J. Linhardt, High-conductivity and high-capacitance electrospun fibers for supercapacitor applications. ACS Appl. Mater. Interfaces 12, 19369–19376 (2020). https://doi.org/10.1021/acsami

    Article  CAS  Google Scholar 

  15. S.K. Shinde, M.B. Jalak, G.S. Ghodake, N.C. Maile, H.M. Yadav, A.D. Jagadale, D.S. Asif Shahzad, A.A. Lee, V.J. Kadam, D.-Y. Kim. Fulari, Flower-like NiCo2O4/NiCo2S4 electrodes on Ni mesh for higher supercapacitor applications. Ceram. Int. 45, 17192–17203 (2019). https://doi.org/10.1016/j.ceramint.2019.05.274

    Article  CAS  Google Scholar 

  16. E.M. Abebe, M. Ujihara, Simultaneous electrodeposition of ternary metal oxide nanocomposites for high-efficiency supercapacitor applications. ACS Omega 7, 17161–17174 (2022). https://doi.org/10.1021/acsomega.2c00826

    Article  CAS  Google Scholar 

  17. E. Noormohammadi, F. Poli, C. Durante, M. Lunardon, S. Sanjabi, F. Soavi, Electrodeposition of cobalt–copper oxides decorated with conductive polymer for supercapacitor electrodes with high stability. ChemElectroChem 9(2022), e202200102 (2022). https://doi.org/10.1002/celc.202200102

    Article  CAS  Google Scholar 

  18. X. Dai, M. Zhang, J. Li, Effects of electrodeposition time on a manganese dioxide supercapacitor. RSC Adv. 10, 15860 (2020). https://doi.org/10.1039/d0ra01681k

    Article  CAS  Google Scholar 

  19. F. Ma, X. Dai, J. Jin, N. Tie, Y. Dai, Hierarchical core-shell hollow CoMoS4@ Ni–Co–S nanotubes hybrid arrays as advanced electrode material for supercapacitors. Electrochim. Acta 331, 135459 (2020)

    Article  CAS  Google Scholar 

  20. M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7(3), 867–884 (2014)

    Article  CAS  Google Scholar 

  21. H. Zhang et al., Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8(9), 2664–2668 (2008)

    Article  CAS  Google Scholar 

  22. B. Xiao, W. Zhu, Z. Li, J. Zhu, X. Zhu, G. Pezzotti, Tailoring morphology of cobalt–nickel layered double hydroxide via different surfactants for high-performance supercapacitor. R. Soc. Open Sci. 5, 180867 (2018). https://doi.org/10.1098/rsos.180867

    Article  CAS  Google Scholar 

  23. N.A. Salleh, S. Kheawhom, A.A. Mohamad, Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application. Arab. J. Chem. 13, 6838–6846 (2020). https://doi.org/10.1016/j.arabjc.2020.06.036

    Article  CAS  Google Scholar 

  24. N.C. Maile, S.K. Shinde, R.R. Koli, A.V. Fulari, D.Y. Kim, V.J. Fulari, Effect of different electrolytes and deposition time on the supercapacitor properties of nanoflake-like Co(OH)2 electrodes. Ultrason. Sonochem. 51, 49–57 (2019). https://doi.org/10.1016/j.ultsonch.2018.09.003

    Article  CAS  Google Scholar 

  25. D. Singh, R.G. Jadhav, A.K. Das, Electrodeposition of binder-free peptide/Co(OH)2 nanohybrid electrodes for solid-state symmetric supercapacitors. Energy Fuels 35, 16152–16161 (2021). https://doi.org/10.1021/acs.energyfuels.1c01850

    Article  CAS  Google Scholar 

  26. J.S. Santos, F. Trivinho-Strixino, E.C. Pereira, Investigation of Co(OH)2 formation during cobalt electrodeposition using a chemometric procedure. Surf. Coat. Technol. 205, 2585–2589 (2010). https://doi.org/10.1016/j.surfcoat.2010.10.005

    Article  CAS  Google Scholar 

  27. T. Nguyen, M. Boudard, M. Carmezim et al., Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Sci. Rep. 7, 39980 (2017). https://doi.org/10.1038/srep39980

    Article  CAS  Google Scholar 

  28. S. Tang, X. Li, M. Courté, J. Peng, D. Fichou, Hierarchical Cu(OH)2@Co(OH)2 nanotrees for water oxidation electrolysis. ChemCatChem 20, 4038–4043 (2020). https://doi.org/10.1002/cctc.202000558

    Article  CAS  Google Scholar 

  29. V. Gupta, T. Kusahara, H. Toyama, S. Gupta, N. Miura, Potentiostatically deposited nanostructured α-Co(OH)2: a high performance electrode material for redox-capacitors. Electrochem. Commun. 9, 15–23 (2007). https://doi.org/10.1016/j.elecom.2007.06.041

    Article  CAS  Google Scholar 

  30. S.D. Dhas, P.S. Maldar, M.D. Patil, S.A. Mane, M.R. Waikar, R.G. Sonkawade, A.V. Moholkar, Fabrication of efficient electrochemical capacitors rooted in sol-gel derived NiMn2O4 nanoparticles. J. Electroanal. Chem. 897, 1572–6657 (2021). https://doi.org/10.1016/j.jelechem.2021.115548

    Article  CAS  Google Scholar 

  31. S.D. Dhas, P.S. Maldar, M.D. Patil, M. Waikar, R.G. Sonkawade, S. Chakarvarti, S. Shinde, D. Kim, A. Moholkar, Probing the electrochemical properties of NiMn2O4 nanoparticles as prominent electrode materials for supercapacitor applications. Mater. Sci. Eng. B 271, 115298 (2021). https://doi.org/10.1016/j.mseb.2021.115298

    Article  CAS  Google Scholar 

  32. Y. Ma, X. Xie, W. Yang et al., Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv. Compos. Hybrid Mater. 4, 906–924 (2021). https://doi.org/10.1007/s42114-021-00358-2

    Article  CAS  Google Scholar 

  33. D. Wu, X. Xie, Y. Ma, J. Zhang, C. Hou, X. Sun, X. Yang, Y. Zhang, H. Kimura, W. Du, Morphology controlled hierarchical NiS/carbon hexahedrons derived from nitrilotriacetic acid-assembly strategy for high-performance hybrid supercapacitors. Chem. Eng. J. 433, 133673 (2022). https://doi.org/10.1016/j.cej.2021.133673

    Article  CAS  Google Scholar 

  34. V. Sunil, A. Yasin, B. Pal, I. Misnon, C. Karuppiah, C.-C. Yang, R. Jose, Tailoring the charge storability of commercial activated carbon through surface treatment. J. Energy Storage 55, 105809 (2022). https://doi.org/10.1016/j.est.2022.105809

    Article  Google Scholar 

Download references

Acknowledgements

The author Dr. Suprimkumar D. Dhas is thankful to the Chhatrapati Shahu Maharaj Research Training and Human Development Institute (SARTHI), Pune, Maharashtra, for providing funding. Moreover, all the authors acknowledge the Physics Instrumentation Facility Centre (PIFC), Department of Physics, Shivaji University, Kolhapur, for characterization facilities. The financial assistance provided through DST-PURSE Phase II (2018–2022) and UGC DSA Phase II (2018–2033) is highly acknowledged.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

RTP: Writing—Original draft preparation, Conceptualization, Supervision. ASP: Data curation, Investigation. NBW: Visualization, and Software. SDD: Editing and Resources, Conceptualization, Supervision. TTB: Validation. VJF: Funding acquisition, Writing—Review & Editing.

Corresponding author

Correspondence to Vijay J. Fulari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We recognize the importance of maintaining the confidentiality and anonymity of our research participants. All personal information and data collected during the research process are treated with utmost confidentiality. Identifiable information is stored securely and is only accessible to authorized researchers. In our publications, we ensure that individuals cannot be identified directly or indirectly, unless explicit consent has been obtained or where it is essential for the research purposes.

Informed consent

We prioritize obtaining informed consent from all participants involved in our studies. Prior to their participation, we provide detailed information about the purpose of the research, procedures involved, potential risks and benefits, and any other relevant information. Participants are given the opportunity to ask questions and provide voluntary consent before their inclusion in the study. We respect the autonomy and privacy of participants, ensuring their right to withdraw from the study at any time without prejudice.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, R.T., Patil, A.S., Dhas, S.D. et al. Effect of deposition potential and time substitution for Co(OH)2 on controlled synthesis and electrochemical performance for electrochemical supercapacitor. J Mater Sci: Mater Electron 34, 2297 (2023). https://doi.org/10.1007/s10854-023-11436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11436-0

Navigation