Skip to main content
Log in

Different electrodeposition techniques of manganese and nickel oxide on nickel foam and their effect on improved supercapacitor behaviour: a comparative study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Manganese and Nickel oxides were electrodeposited onto Nickel foam by potentiodynamic (10, 25 and 50 cycles), potentiostatic and galvanostatic modes and the effects of different electrodeposition techniques on the elemental compositions and their supercapactive behaviour were studied to optimise the most appropriate electrodeposition technique for supercapacitor application. The structural properties, morphology and elemental analysis were studied by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) accompanied by Energy-Dispersive X-Ray Analysis (EDX). The electrodes’ functional groups were analysed via Fourier Transform-Infrared Spectroscopy (FT-IR). Their electrochemical supercapactive performance were assessed by calculating the areal capacitance from cyclic voltammograms (CV), from Galvanostatic charge-discharge Curves (GCD), and their behaviour was accessed by Electrochemical impedance spectroscopy (EIS) analyses in 0.1 M KOH. The electrochemical results specified among the different electrode MN10, MN25, MN50 (potentiodynamic electrodeposition), MNCA (electrodeposition via chronoamperometry) and MNCP (electrodeposition via chronopotentiometry); MN25 delivered the highest areal capacitance areal capacitance 256.08 F cm−2, with energy density 12.81 Wh cm−2 and power density 150.71 W cm−2 with the capacitance retention percentage of 80.5% at 5 Acm−2 after 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. M. Hoel, S. Kverndokk, Res. Energy Econ. 18, 115 (1996). https://doi.org/10.1016/0928-7655(96)00005-X

    Article  Google Scholar 

  2. T.N. Veziroğlu, S. Şahi, Energy Convers. Manag. 49, 1820 (2008). https://doi.org/10.1016/j.enconman.2007.08.015

    Article  CAS  Google Scholar 

  3. M. Höök, X. Tang, Energy Policy. 52, 797 (2013). https://doi.org/10.1016/j.enpol.2012.10.046

    Article  CAS  Google Scholar 

  4. A. Raveendran, M. Chandran, S.M. Wabaidur, M.A. Islam, R. Dhanusuraman, VK Ponnusamy, Fuel. 324, 124424 (2022). https://doi.org/10.1016/j.fuel.2022.124424

    Article  CAS  Google Scholar 

  5. M. Chandran, A. Raveendran, A. Thomas, M. Vinoba, S.K. Jeong, M. Bhagiyalakshmi, Synth. Met. 293, 117260 (2023). https://doi.org/10.1016/j.synthmet.2022.117260

    Article  CAS  Google Scholar 

  6. J.B. Goodenough, H.D. Abruna, M.V. Buchanan, Basic research needs for electrical energy storage. Report of the basic energy sciences workshop on electrical energy storage, 2–4 April 2007. https://doi.org/10.2172/935429

  7. J.W. Duay, Electrochemical Synthesis, transformation, and characterization of MnO2 nanowire arrays for supercapacitor electrodes (2013). http://hdl.handle.net/1903/14499

  8. R. Dhanusuraman, P. Chahal, A. Raveendran et al., J. Energy Storage. 60, 106554 (2023). https://doi.org/10.1016/j.est.2022.106554

    Article  Google Scholar 

  9. X. Lin, M. Salari, L.M.R. Arava, P.M. Ajayan, M.W. Grinstaff, Chem. Soc. Rev. 45, 5848 (2016). https://doi.org/10.1039/C6CS00012F

    Article  CAS  Google Scholar 

  10. PN Pintauro, Polym. Rev. 55, 201 (2015). https://doi.org/10.1080/15583724.2015.1031378

    Article  CAS  Google Scholar 

  11. M. Chandran, I. Shamna, A. Anusha, M. Bhagiyalakshmi, SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-0509-1

    Article  Google Scholar 

  12. M. Chandran, A. Thomas, A. Raveendran, M. Vinoba, M. Bhagiyalakshmi, J. Energy Storage. 30, 101446 (2020). https://doi.org/10.1016/j.est.2020.101446

    Article  Google Scholar 

  13. Z. Wu, Y. Zhu, X. Ji, C.E. Banks, Nanomater. Adv. Batteries Supercapacitors (2016). https://doi.org/10.1007/978-3-319-26082-2_9

    Article  Google Scholar 

  14. B. De, S. Banerjee, K.D. Verma, T. Pal, P. Manna, K.K. Kar, Handbook of Nanocomposite Supercapacitor Materials II: Performance (Springer, Berlin, 2020). https://doi.org/10.1007/978-3-030-52359-6_4

    Book  Google Scholar 

  15. M. Muthuselvi, K. Jeyasubramanian, G. Hikku et al., Int. J. Energy Res. 45, 8255 (2021). https://doi.org/10.1002/er.6441

    Article  CAS  Google Scholar 

  16. W.H. Low, P.S. Khiew, S.S. Lim, C.W. Siong, E.R. Ezeigwe, J. Alloys Compd. 775, 1324 (2019). https://doi.org/10.1016/j.jallcom.2018.10.102

    Article  CAS  Google Scholar 

  17. D. Lincot, Thin Solid Films. 487, 40 (2005). https://doi.org/10.1016/j.tsf.2005.01.032

    Article  CAS  Google Scholar 

  18. W. Schwarzacher, Electrochem. Soc. Interface. 15, 32 (2006). https://doi.org/10.1149/2.F08061IF

    Article  CAS  Google Scholar 

  19. G.A. Ali, M.M. Yusoff, Y.H. Ng, H.N. Lim, K.F. Chong, Curr. Appl. Phys. 15, 1143 (2015). https://doi.org/10.1016/j.cap.2015.06.022

    Article  Google Scholar 

  20. H.Y. Lee, J.B. Goodenough, J. Solid State Chem. 144, 220 (1999). https://doi.org/10.1006/jssc.1998.8128

    Article  CAS  Google Scholar 

  21. S. Devaraj, N. Munichandraiah, Electrochem. Solid-State Lett. 8, A373 (2005). https://doi.org/10.1149/1.1922869

    Article  CAS  Google Scholar 

  22. D. Dubal, D. Dhawale, T. Gujar, C. Lokhande, Appl. Surf. Sci. 257, 3378 (2011). https://doi.org/10.1016/j.apsusc.2010.11.028

    Article  CAS  Google Scholar 

  23. E. Muthusankar, D. Ragupathy, Mater. Lett. 241, 144 (2019). https://doi.org/10.1016/j.matlet.2019.01.071

    Article  CAS  Google Scholar 

  24. M. Jayachandran, A. Rose, T. Maiyalagan, N. Poongodi, T. Vijayakumar, Electrochim. Acta. 366, 137412 (2021). https://doi.org/10.1016/j.electacta.2020.137412

    Article  CAS  Google Scholar 

  25. L. Hu, W. Chen, X. Xie et al., ACS nano. 5, 8904 (2011). https://doi.org/10.1021/nn203085j

    Article  CAS  Google Scholar 

  26. P. Tang, Y. Zhao, C. Xu, Electrochim. Acta. 89, 300 (2013). https://doi.org/10.1016/j.electacta.2012.11.034

    Article  CAS  Google Scholar 

  27. M. Arvani, J. Keskinen, D. Lupo, M. Honkanen, J. Energy Storage. 29, 101384 (2020). https://doi.org/10.1016/j.est.2020.101384

    Article  Google Scholar 

  28. T. Gujar, V. Shinde, C. Lokhande, W.-Y. Kim, K.-D. Jung, O.-S. Joo, Electrochem. Commun. 9, 504 (2007). https://doi.org/10.1016/j.elecom.2006.10.017

    Article  CAS  Google Scholar 

  29. S. Rahimi, S. Shahrokhian, H. Hosseini, J. Electroanal. Chem. 810, 78 (2018). https://doi.org/10.1016/j.jelechem.2018.01.004

    Article  CAS  Google Scholar 

  30. V. Kovalenko, V. Kotok, I. Kovalenko, (2018) Восточно-Европейский журнал передовых технологий, 56

  31. N.A. Salleh, S. Kheawhom, A.A. Mohamad, Arab. J. Chem. 13, 6838 (2020). https://doi.org/10.1016/j.arabjc.2020.06.036

    Article  CAS  Google Scholar 

  32. X. Zhang, X. Wang, L. Jiang, H. Wu, C. Wu, J Su, J. Power Sources. 216, 290 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.090

    Article  CAS  Google Scholar 

  33. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chem. Soc. Rev. 44, 7484 (2015). https://doi.org/10.1039/C5CS00303B

    Article  CAS  Google Scholar 

  34. M.J. Carmezim, C.F. Santos, Metal Oxides Supercapacitors. (2017). https://doi.org/10.1016/B978-0-12-810464-4.00003-6

    Article  Google Scholar 

  35. J. Yin, J. Park, Microporous Mesoporous Mater. 200, 61 (2014). https://doi.org/10.1016/j.micromeso.2014.08.016

    Article  CAS  Google Scholar 

  36. L. Gu, Y. Wang, R. Lu, L. Guan, X. Peng, J Sha, J. Mater. Chem. A 2, 7161 (2014). https://doi.org/10.1039/C4TA00205A

    Article  CAS  Google Scholar 

  37. M. Chandran, A. Raveendran, M. Vinoba, B.K. Vijayan, M. Bhagiyalakshmi, Ceram. Int. 47, 26847 (2021). https://doi.org/10.1016/j.ceramint.2021.06.093

    Article  CAS  Google Scholar 

  38. H. Jeong, L.K. Kwac, C.G. Hong, H.G. Kim, Mater. Sci. Eng.: C 118, 111510 (2021). https://doi.org/10.1016/j.msec.2020.111510

    Article  CAS  Google Scholar 

  39. M Mylarappa, VV Lakshmi, KV Mahesh, H Nagaswarupa, N Raghavendra (2016) IOP Conference series: materials science and engineering, IOP Publishing, https://doi.org/10.1016/j.matpr.2017.09.152

  40. C.J. Clarke, G.J. Browning, S.W. Donne, Electrochim. Acta. 51, 5773 (2006). https://doi.org/10.1016/j.electacta.2006.03.013

    Article  CAS  Google Scholar 

  41. A. Sonavane, A. Inamdar, P. Shinde, H. Deshmukh, R. Patil, P. Patil, J. Alloys Compd. 489, 667 (2010). https://doi.org/10.1016/j.jallcom.2009.09.146

    Article  CAS  Google Scholar 

  42. D.T. Dam, X. Wang, J.-M. Lee, Nano Energy. 2, 1303 (2013). https://doi.org/10.1016/j.nanoen.2013.06.011

    Article  CAS  Google Scholar 

  43. A. Huang, M.F. El-Kady, X. Chang et al., Adv. Energy Mater. 11, 2100768 (2021). https://doi.org/10.1002/aenm.202100768

    Article  CAS  Google Scholar 

  44. K. Allado, M. Liu, A. Jayapalan, D. Arvapalli, K. Nowlin, Energy Fuels 35, 8396 (2021). https://doi.org/10.1021/acs.energyfuels.1c00556

    Article  CAS  Google Scholar 

  45. S. Ardizzone, G. Fregonara, S. Trasatti, Electrochim. Acta. 35, 263 (1990). https://doi.org/10.1016/0013-4686(90)85068-X

    Article  CAS  Google Scholar 

  46. J. Duay, S.A. Sherrill, Z. Gui, E. Gillette, S.B. Lee, Acs Nano. 7, 1200 (2013). https://doi.org/10.1021/acs.energyfuels.1c00556

    Article  CAS  Google Scholar 

  47. J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 111, 14925 (2007). https://doi.org/10.1021/jp074464w

    Article  CAS  Google Scholar 

  48. K. Brezesinski, J. Wang, J. Haetge et al., J. Am. Chem. Soc. 132, 6982 (2010). https://doi.org/10.1021/ja9106385

    Article  CAS  Google Scholar 

  49. R. Gummow, A. De Kock, M. Thackeray, Solid State Ionics. 69, 59 (1994). https://doi.org/10.1016/0167-2738(94)90450-2

    Article  CAS  Google Scholar 

  50. S. Sivakkumar, J.M. Ko, D.Y. Kim, B. Kim, Electrochim. Acta 52, 7377 (2007). https://doi.org/10.1016/j.electacta.2007.06.023

    Article  CAS  Google Scholar 

  51. S. Singhal, A. Shukla, J. Solid State Electrochem. 24, 1271 (2020). https://doi.org/10.1007/s10008-020-04615-0

    Article  CAS  Google Scholar 

  52. A. Zhang, R. Zhao, L Hu, et al., Adv. Energy Mater. 11, 2101412 (2021). https://doi.org/10.1002/aenm.202101412

    Article  CAS  Google Scholar 

  53. A. Zhang, R. Gao, L Hu, et al., Chem. Eng. J. 417, 129186 (2021). https://doi.org/10.1016/j.cej.2021.129186

    Article  CAS  Google Scholar 

  54. H. Duan, Z. Zhao, J. Lu et al., ACS Appl. Mater. Interfaces. 13, 33083 (2021). https://doi.org/10.1021/acsami.1c08161

    Article  CAS  Google Scholar 

  55. X. Tan, S. Liu, Q. Guo et al., Int. J. Energy Res. 44, 4556 (2020). https://doi.org/10.1002/er.5235

    Article  CAS  Google Scholar 

  56. H. Zhang, J. Wei, Y Yan, et al., J. Power Sources. 450, 227616 (2020). https://doi.org/10.1016/j.jpowsour.2019.227616

    Article  CAS  Google Scholar 

  57. Y. Liu, N. Wang, C. Yang, W Hu, Ceram. Int. 42, 11411 (2016). https://doi.org/10.1016/j.ceramint.2016.04.071

    Article  CAS  Google Scholar 

  58. L. Su, L. Gao, Q. Du et al., J. Alloys Compd. 749, 900 (2018). https://doi.org/10.1016/j.jallcom.2018.03.353

    Article  CAS  Google Scholar 

  59. Y. Pan, H. Gao, M. Zhang, L. Li, G. Wang, X. Shan, J. Colloid Interface Sci. 497, 50 (2017). https://doi.org/10.1016/j.jcis.2017.02.053

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Researchers Supporting Project Number (RSP2023R326), King Saud University, Riyadh, Saudi Arabia. Also, the authors would like to thank the basic research support from the National Institute of Technology Puducherry, Karaikal, India.

Funding

This work was supported by King Saud University (Grant No: RSP2023R326).

Author information

Authors and Affiliations

Authors

Contributions

AR performed the investigation, MC contributed to data interpretation, MRS and SMW project administration, and funding acquisition, ME contributed to the writing of the original draft and RD contributed to writing, reviewing, and editing the manuscript.

Corresponding author

Correspondence to Ragupathy Dhanusuraman.

Ethics declarations

Conflict of interest

The authors report no declaration of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raveendran, A., Chandran, M., Siddiqui, M.R. et al. Different electrodeposition techniques of manganese and nickel oxide on nickel foam and their effect on improved supercapacitor behaviour: a comparative study. J Mater Sci: Mater Electron 34, 2018 (2023). https://doi.org/10.1007/s10854-023-11416-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11416-4

Navigation