Skip to main content

Advertisement

Log in

Improved electrochemical performance of supercapacitors by utilizing ternary Pd-AC-doped NiO nanostructure as an electrode material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Recent applications of supercapacitors in modern society are limited due to their poor electrochemical properties like energy density and cyclic stability, etc. One of the effective approaches to boost the electrochemical performance is to couple the metal oxide with metal and carbon nanostructures. In this study, hybrid ternary nanocomposite, comprised of palladium, activated carbon, and nickel oxide nanoparticles (Pd-AC@NiO), has been synthesized through a simple approach. Here, metal-carbon material plays a significant role in augmenting the specific surface area, while the existence of NiO nanoparticles provides the electroactive sites for energy storage. Consequently, the as-prepared Pd-AC@NiO nanocomposite provides excellent electrochemical performance compared to the as-prepared NiO nanoparticles as an electroactive material. When the hybrid ternary nanocomposite is used as an electroactive material for supercapacitor, it displays an outstanding specific capacitance of 1539 F/g at a current density of 5 A/g in a three-electrode system. Moreover, in terms of energy and power, the as-prepared hybrid ternary nanocomposite electrode demonstrates a high energy density of 34.19 Wh/kg and power density of 1000 W/kg. Additionally, the resulting hybrid ternary nanocomposite electrode shows excellent cycling stability with the capacity retention of 95.5% after 5000 cycles. Thus, these outcomes suggest that the proposed composite material has tremendous electrochemical properties. It deliberated as a promising electrode for the development of energy storage devices with high energy and power densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gur TM (2018) Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 11(10):2696–2767

    Article  Google Scholar 

  2. Aneke M, Wang M (2016) Energy storage technologies and real life applications- a state of the art review. Appl Energy 179:350–377

    Article  Google Scholar 

  3. Mahlia TMI, Saktisahdan TJ, Jannifar A, Hasan MH, Matseelar HSC (2014) A review of available methods and development on energy storage: technology update. Renew Sust Energ Rev 33:532–545

    Article  Google Scholar 

  4. Yang Z-R, Wang S-Q, Wang J, Zhou A-J, Xu C-W (2017) Pd supported on carbon containing nickel, nitrogen and sulfur for ethanol electrooxidation. Sci Rep 7(1):15479

    Article  Google Scholar 

  5. Libich J, Maca J, Vondrak J, Cech O, Sedlarikova M (2018) Supercapacitors: properties and applications. Journal of Energy Storage 17:224–227

    Article  Google Scholar 

  6. Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J (2019) A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sust Energ Rev 101:123–145

    Article  CAS  Google Scholar 

  7. Iro ZS, Subramani C, Dash SS (2016) A brief review on electrode materials for supercapacitors. Int J Electrochem Sci 11:10628–10643

    Article  CAS  Google Scholar 

  8. Raza W, Ali F, Raza N, Luo Y, Kim K-H, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitors technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  9. Miller EE, Hua Y, Tezel FH (2018) Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitors. Journal of Energy Storage 20:30–40

    Article  Google Scholar 

  10. Hao P, Zhao Z, Li L, Tuan C-C, Li H, Sang Y, Jiang H, Wong CP, Liu H (2015) The hybrid nanostructure of MnCo2O4.5nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density. Nanoscale 7(34):14401–14412

    Article  CAS  Google Scholar 

  11. Vadiyar MM, Bhise SC, Patil SK, Kolekar SS, Shelke AR, Deshpande NG, Chang J-Y, Ghule KS, Ghule AV (2016) Contact angle measurements: a preliminary diagnostic tool for evaluating the performance of ZnFe2O4nano-flake based supercapacitors. Chem Commun 52(12):2557–2560

    Article  CAS  Google Scholar 

  12. Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on grapheme/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21(12):2366–2375

    Article  CAS  Google Scholar 

  13. Shi Q, Cha Y, Song Y, Lee J-I, Zhu C, Li X, Song M-K, Du D, Lin Y (2016) 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nanoscale 8(34):15414–15447

    Article  CAS  Google Scholar 

  14. Zhen L, Fan B, Junjie W, Weiwei Y, Liang W, Zhiwen C, Dengyu P, Minghong W (2018) Boosting the energy storage densities of supercapacitors by incorporating N-doped grapheme quantum dots into cubic porous carbon. Nanoscale 10:22871–22883

    Article  Google Scholar 

  15. Padmanathan N, Selladurai S, Razeeb KM (2015) Ultra-fast rate capability of a symmetric supercapacitor with a hierarchical Co3O4 nanowire/nanoflower hybrid structure in non-aqueous electrolyte. RSC Adv 5(17):12700–12709

    Article  CAS  Google Scholar 

  16. Shaikh JS, Pawar RC, Devan RS, Ma YR, Salvi PP, Kolekar SS, Patil PS (2011) Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on bronsted acidic ionic liquid. Electrochim Acta 56(5):2127–2134

    Article  CAS  Google Scholar 

  17. Hodaei A, Dezfuli AS, Naderi HR (2018) A high-performance supercapacitor based on N-doped TiO2 nanoparticles. J Mater Sci Mater Electron 29:14596–14604

    Article  CAS  Google Scholar 

  18. Xia X, Zhang Y, Chao D, Guan C, Zhang Y, Li L, Ge X, Bacho IM, Tu J, Fan HJ (2014) Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6(10):5008–5048

    Article  CAS  Google Scholar 

  19. Cao F, Pan GX, Xia XH, Tang PS, Chen HF (2014) Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. J Power Sources 264:161–167

    Article  CAS  Google Scholar 

  20. Yu W, Jiang X, Ding S, Li BQ (2014) Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheet as electrodes of supercapacitors. J Power Sources 256:440–448

    Article  CAS  Google Scholar 

  21. Yuan G, Liu Y, Yue M, Li H, Liu E, Huang Y, Kong D (2014) Cu-doped NiO for aqueous asymmetric electrochemical capacitors. Ceram Int 40(7):9101–9105

    Article  CAS  Google Scholar 

  22. Nagamuthu S, Ryu K-S (2019) Synthesis of Ag/NiO honeycomb structured nanoarrays as the electrode material for high-performance asymmetric supercapacitor devices. Sci Rep 9(1):4864

    Article  Google Scholar 

  23. Chen J, Peng X, Song L, Zhang L, Liu X, Luo J (2018) Facile synthesis of Al-doped NiOnanosheet arrays for high-performance supercapacitors. R Soc Open Sci 5(11):180842

    Article  CAS  Google Scholar 

  24. Wang Y, Su Q (2016) Synthesis of NiO/Ag nanocomposites by micro-emulsion method and the capacitance performance as electrodes. J Mater Sci Mater Electron 27:4752–4759

    Article  CAS  Google Scholar 

  25. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Porous NiO/C nanocomposites as electrode material for electrochemical supercapacitors. ACS Sustain Chem Eng 9:1110–1118

    Article  Google Scholar 

  26. Chen W, Gui D, Liu J (2016) Nickel oxide/graphene aerogel nanocomposite as a supercapacitor electrode material with extremely wide working potential window. Electrochim Acta 222:1424–1429

    Article  CAS  Google Scholar 

  27. Yan Y, Wang T, Li X, Pang H, Xue H (2017) Noble metal-based materials in high-performance supercapacitors. Inorg.Chem.Front. 4(1):33–51

    Article  CAS  Google Scholar 

  28. Wu JB, Li ZG, Lin Y (2011) Porous NiO/Ag composite film for electrochemical capacitor application. Electrochim Acta 56(5):2116–2121

    Article  CAS  Google Scholar 

  29. Qu B, Hu L, Chen Y, Li C, Li Q, Wang Y, Wei W, Chen L, Wang T (2013) Rational design of Au-NiO hierarchical structures with enhanced rate performance for supercapacitors. J Mater Chem A 1(24):7023–7026

    Article  CAS  Google Scholar 

  30. Kalambate PK, Rawool CR, Karna SP, Srivastava AK (2018) Nitrogen-doped grapheme/palladium nanoparticles/porous poluaniline ternary composite as an efficient electrode material for high performance supercapacitor. Materials Science for Energy Technologies 2:246–257

    Article  Google Scholar 

  31. Jiang W, Zhang K, Wei L, Yu D, Wei J, Chen Y (2013) Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors. Nanoscale 5(22):11108–11117

    Article  CAS  Google Scholar 

  32. Mingjia Z, Chengcheng X, Jiangtian L, Ming L, Nianqiang W (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88

    Article  Google Scholar 

  33. Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) Carbon-based nanostructured materials and their composites as supercapacitors electrodes. J Mater Chem 22(3):767–784

    Article  CAS  Google Scholar 

  34. Chen W, He Y, Li X, Zhou J, Zhang Z, Zhao C, Gong C, Li S, Pan X, Xie E (2013) Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics. Nanoscale 5(23):11733–11741

    Article  CAS  Google Scholar 

  35. Sk MM, Yue CY, Ghosh K, Jena RK (2016) Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J Power Sources 308:121–140

    Article  CAS  Google Scholar 

  36. Winkler K, Grodzka E, D’Souza F, Balch AL (2007) Two-component films of fullerene and palladium as materials for electrochemical capacitors. J Electrochem Soc 154(4):K1–K10

    Article  CAS  Google Scholar 

  37. Dar RA, Giri L, Karna SP, Srivastava AK (2016) Performance of palladium nanoparticle-graphene composite as an efficient electrode material for electrochemical double layer capacitors. Electrochim Acta 196:547–557

    Article  CAS  Google Scholar 

  38. Jin Y, Zhao J, Li F, Jia W, Liang D, Chen H, Li R, Hu J, Ni J, Wu T, Zhong D (2016) Nitrogen-doped graphene supported palladium-nickel nanoparticles with enhanced catalytic performance for formic acid oxidation. Electrochim Acta 220:83–90

    Article  CAS  Google Scholar 

  39. Dhanushkotti R, Pulidindi IN, Arumugam P, Chinnathambi M (2018) Pd-NiO decorated multiwalled carbon nanotubes supported on reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation in alkaline medium. Appl Surf Sci 442:787–796

    Article  Google Scholar 

  40. Wang H-Q, Fan X-P, Zhang X-H, Huang Y-G, Wu Q, Pan Q-C, Li Q-Y (2017) In situ growth of NiO nanoparticles on carbon paper as a cathode for rechargeable Li-O2 batteries. RSC Adv 7(38):23328–23333

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.S. acknowledges the fellowship support from the University Grant Commission (UGC) India. The authors are thankful to the CRF and NRF facilities provided by IIT Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.K. Shukla.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3008 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, S., Shukla, A. Improved electrochemical performance of supercapacitors by utilizing ternary Pd-AC-doped NiO nanostructure as an electrode material. J Solid State Electrochem 24, 1271–1282 (2020). https://doi.org/10.1007/s10008-020-04615-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04615-0

Keywords

Navigation