Skip to main content
Log in

Investigation on the microstructural, optical, electrical, and photocatalytic properties of WO3 nanoparticles: an effect of Ce doping concentrations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The pure and Ce-doped WO3 nanoparticles (NPs) were synthesized by a simple chemical precipitation method. This work aims to study the impact of Ce on the structural, morphological, optical, electrical, dielectric, and photocatalytic activity of WO3 NPs. X-ray diffraction (XRD) spectra reveal the formation of the monoclinic structure of WO3 and Ce–WO3 NPs. The average crystallite size decreased from 37 to 31 nm when the Ce doping concentrations increased from 0 to 5%. The bandgap value of WO3 is 2.76 eV, which is reduced by increasing Ce concentrations. The 5% Ce-doped WO3 NPs exhibited maximum electrical conductivity of 5.01 × 10−7 S/cm. The frequency and temperature dependence DC conductivity of Ce-doped WO3 NPs were determined. The 5% Ce-doped WO3 NPs showed the highest photocatalytic activity; 87% of methyl orange (MO) dye was degraded under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this article.

References

  1. S.S. Salem, A mini review on green nanotechnology and its development in biological effects. Arch. Microbiol. 205, 15 (2023). https://doi.org/10.1007/s00203-023-03467-2

    Article  CAS  Google Scholar 

  2. F.H. Alkallas, A. Tahani, A.M. Alrebdi, M. Ahmed, M. Rabia, Development of a highly efficient optoelectronic device based on CuFeO2/CuO/Cu composite nanomaterials. Materials 15(19), 6857 (2022). https://doi.org/10.3390/ma15196857

    Article  CAS  Google Scholar 

  3. B. Nadeem, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2, 1821–1871 (2021). https://doi.org/10.1039/d0ma00807a

    Article  Google Scholar 

  4. W. Yue Sun, Q. Zhang, H. Li, X. Liu, Wang, Preparations and applications of zinc oxide based photocatalytic materials. Adv. Sens. Energy Mater. 2, 100069 (2023). https://doi.org/10.1016/j.asems.2023.100069

    Article  Google Scholar 

  5. K. Tanji, E. Mrabet, I. Fahoul, Y. Jellal, I. Benjelloun, M. Belghiti, M.E. Hajam, M. Naciri, Y. El Gaidoumi, A. El Bali, B. Zaitan, H., A. Kherbeche, Epigrammatic progress on the photocatalytic properties of ZnO and TiO2 based hydroxyapatite@photocatlyst toward organic molecules photodegradation: a review. J. Water Process Eng. 53, 103682 (2023). https://doi.org/10.1016/j.jwpe.2023.103682

    Article  Google Scholar 

  6. R. Karmakar, S. Sinha, A. Kumar, S. Dey, B. Dutta, Observation of synergistic effects in multiphase tungsten oxide (WO3) nanocomposite and its role in enhanced supercapacitive and photoluminescence properties. Mater. Chem. Phys. 305, 127915 (2023). https://doi.org/10.1016/j.matchemphys.2023.127915

    Article  CAS  Google Scholar 

  7. D. Yu Yao, L. Sang, Q. Zou, C. Wang, Y. Liu, D. Yao, L. Sang, Q. Zou, Wang, A review on the properties and applications of WO3 nanostructure-based optical and electronic devices. Nanomaterials 11, 2136 (2021). https://doi.org/10.3390/nano11082136

    Article  CAS  Google Scholar 

  8. J. Li, J. Wu, Y. Yu, Applied surface science DFT exploration of sensor performances of two-dimensional WO3 to ten small gases in terms of work function and band gap changes and I–V responses. Appl. Surf. Sci. 546, 149104 (2021). https://doi.org/10.1016/j.apsusc.2021.149104

    Article  CAS  Google Scholar 

  9. K. Nishizawa, Y. Yamada, K. Yoshimura, Low-temperature chemical fabrication of WO3 gasochromic switchable films: a comparative study of pd and pt nanoparticles dispersed WO3 films based on their structural and chemical properties. Thin Solid Films 709, 138201 (2020). https://doi.org/10.1016/j.tsf.2020.138201

    Article  CAS  Google Scholar 

  10. W.-C. Au, A. Benedict, D. Tamang, Knipp, K. Chan, Post-annealing effect on the electrochromic properties of WO3 films. Opt. Mater. 108, 110426 (2020). https://doi.org/10.1016/j.optmat.2020.110426

    Article  CAS  Google Scholar 

  11. B. Koo, M. Jo, K. Kim, H. Ahn, Amorphous-quantized WO3⋅H2O films as novel flexible electrode for advanced electrochromic energy storage devices. Chem. Eng. J. 424, 130383 (2021). https://doi.org/10.1016/j.cej.2021.130383

    Article  CAS  Google Scholar 

  12. J.C. Murillo-Sierra, J.C.A. Hernández-Ramírez, L. Hinojosa-Reyes, J.L. Guzmán-Mar, A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications. Chem. Eng. J. Adv. 5, 100070 (2021). https://doi.org/10.1016/j.ceja.2020.100070

    Article  CAS  Google Scholar 

  13. E. Boateng, S.S. Thind, S. Chen, A. Chen, Synthesis and electrochemical studies of WO3 -based nanomaterials for environmental, energy and gas sensing applications. Electrochem. Sci. Adv. 2, 21 (2022). https://doi.org/10.1002/elsa.202100146

    Article  CAS  Google Scholar 

  14. J. Pan, R. Zheng, Y. Wang, X. Ye, Z. Wan, C. Jia, X. Weng, J. Xie, L. Deng, Solar energy materials and solar cells a high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window. Sol. Energy Mater. Sol. Cells 207, 110337 (2020). https://doi.org/10.1016/j.solmat.2019.110337

    Article  CAS  Google Scholar 

  15. K. Kim, T.Y. Yun, S. You, X. Tang, J. Lee, Y. Seo, Y. Kim, S.H. Kim, H.C. Moon, J.K. Kim, Extremely fast electrochromic supercapacitors based on mesoporous WO3 prepared by an evaporation-induced self-assembly. NPG Asia Materials. 12, 10 (2020). https://doi.org/10.1038/s41427-020-00257-w

    Article  CAS  Google Scholar 

  16. Y. Badour, S. Danto, S. Albakour, S. Mornet, N. Penin, Low-cost WO3 nanoparticles / PVA smart photochromic glass windows for sustainable building energy savings solar energy materials and solar cells low-cost WO3 nanoparticles/PVA smart photochromic glass windows for sustainable building energy savings. Sol. Energy Mater. Sol. Cells 255, 112291 (2023). https://doi.org/10.1016/j.solmat.2023.112291

    Article  CAS  Google Scholar 

  17. M. Desseigne, N. Dirany, V. Chevallier, M. Arab, Shape dependence of photosensitive properties of WO3 oxide for photocatalysis under solar light irradiation. Appl. Surf. Sci. 483, 313–323 (2019). https://doi.org/10.1016/j.apsusc.2019.03.269

    Article  CAS  Google Scholar 

  18. P.V. Morais, P.H. Suman, R.A. Silva, M.O. Orlandi, High gas sensor performance of WO3 nanofibers prepared by electrospinning. J. Alloys Compd. 864, 158745 (2021). https://doi.org/10.1016/j.jallcom.2021.158745

    Article  CAS  Google Scholar 

  19. L. Mohan, A.V. Avani, P. Kathirvel, R. Marnadu, R. Packiaraj, J.R. Joshua, N. Nallamuthu, M. Shkir, S. Saravanakumar, Investigation on structural, morphological and electrochemical properties of Mn doped WO3 nanoparticles synthesized by co-precipitation method for supercapacitor applications. J. Alloys Compd. 882, 160670 (2021). https://doi.org/10.1016/j.jallcom.2021.160670

    Article  CAS  Google Scholar 

  20. D.W. Leitzke, C.M. Cholant, D.M. Landarin, C.S. Lucio, L.U. Krüger, A. Gündel, W.H. Flores, Electrochemical properties of WO3 sol–gel thin films on indium tin oxide/poly (ethylene terephthalate) substrate. Thin Solid Films 683, 8–15 (2019). https://doi.org/10.1016/j.tsf.2019.05.018

    Article  CAS  Google Scholar 

  21. Y. Wang, L. Yao, L. Xu, W. Wu, W. Lin, One-step solvothermal synthesis of hierarchical WO3 hollow microspheres with excellent NO gas sensing properties. Mater. Lett. 302, 130460 (2021). https://doi.org/10.1016/j.matlet.2021.130460

    Article  CAS  Google Scholar 

  22. S. Tasleem, M. Tahir, Recent progress in structural development and band engineering of perovskites materials for photocatalytic solar hydrogen production: a review International. J. Hydrogen Energy. 45, 19078–19111 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.090

    Article  CAS  Google Scholar 

  23. W. Zheng, Y. Dong, T. Li, J. Chen, X. Chen, Y. Dai, G. He, MgO blocking layer induced highly UV responsive TiO2 nanoparticles based self-powered photodetectors. J. Alloys Compd. 869, 159299 (2021). https://doi.org/10.1016/j.jallcom.2021.159299

    Article  CAS  Google Scholar 

  24. M. Canta, V. Cauda, Biomaterials Science the investigation of the parameters affecting the ZnO nanoparticle cytotoxicity behavior: a tutorial review. Biomaterials Sci. 8, 6157–6174 (2020). https://doi.org/10.1039/d0bm01086c

    Article  CAS  Google Scholar 

  25. H. Song, Y. Li, Z. Lou, M. Xiao, L. Hu, Z. Ye, L. Zhu, Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl. Catal. B (2015). https://doi.org/10.1016/j.apcatb.2014.11.020

    Article  Google Scholar 

  26. X. Liu, H. Zhai, P. Wang, Q. Zhang, Z. Wang, Y. Liu, Y. Dai, B. Huang, X. Qin, X. Zhang, Synthesis of a WO3 photocatalyst with high photocatalytic activity and stability using synergetic internal Fe3+ doping and superficial pt loading for ethylene degradation under visible-light irradiation. Catal. Sci. Technol. 9, 652–658 (2019). https://doi.org/10.1039/c8cy02375a

    Article  CAS  Google Scholar 

  27. S.B. Upadhyay, R.K. Mishra, P.P. Sahay, Sensors and actuators B: chemical structural and alcohol response characteristics of Sn-doped WO3 nanosheets. Sens. Actuators: B Chem. 193, 19–27 (2014). https://doi.org/10.1016/j.snb.2013.11.049

    Article  CAS  Google Scholar 

  28. A.A. Dakhel, Study of semimagnetic Mn-doped WO3 nanoparticles synthesised by precipitation method: hydrogenation creates a promising DMS. J. Supercond. Nov. Magn. 31, 2039–2046 (2018). https://doi.org/10.1007/s10948-017-4430-9

    Article  CAS  Google Scholar 

  29. F. Mehmood, J. Iqbal, M. Ismail, A. Mehmood, Ni doped WO3 nanoplates: an excellent photocatalyst and novel nanomaterial for enhanced anticancer activities. J. Alloys Compd. 746, 729–738 (2018). https://doi.org/10.1016/j.jallcom.2018.01.409

    Article  CAS  Google Scholar 

  30. A. Gupta, S. Rajawat, M.M. Malik, Study of UV-sensitive Ag doped WO3 prepared using ultra-sonication. Optik. 242, 167266 (2021). https://doi.org/10.1016/j.ijleo.2021.167266

    Article  CAS  Google Scholar 

  31. Y. Zhan, M.R.J. Tan, X. Cheng, W.M.A. Tan, G.F. Cai, J.W. Chen, V. Kumar, S. Magdassi, P.S. Lee, Ti-doped WO3 synthesized by a facile wet bath method for improved electrochromism. J. Mater. Chem. C 5, 9995–10000 (2017). https://doi.org/10.1039/C7TC02456H

    Article  CAS  Google Scholar 

  32. N.M. Vuong, D. Kim, H. Kim, Porous Au-embedded WO3 nanowire structure for efficient detection of CH4 and H2S. Sci. Rep. 5, 1–13 (2015). https://doi.org/10.1038/srep11040

    Article  Google Scholar 

  33. G. Mathankumar, P. Bharathi, M.K. Mohan, S. Harish, M. Navaneethan, J. Archana, P. Suresh, G.K. Mani, P. Dhivya, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and functional properties of nanostructured Gd-doped WO3/TiO 2 composites for sensing applications. Mater. Sci. Semiconduct. Process. 105, 104732 (2020). https://doi.org/10.1016/j.mssp.2019.104732

    Article  CAS  Google Scholar 

  34. Q. Diao, Y. Yin, W. Jia, X. Xu, Y. Ding, X. Zhang, J. Cao, Highly sensitive ethanol sensor based on Ce- doped WO3 with raspberry-like architecture. Mater. Res. Express 7, 115012 (2020). https://doi.org/10.1088/2053-1591/abcabf

    Article  CAS  Google Scholar 

  35. Z. Swetha Ramani, B. Yin, R. Miller, Venkat, N. Bhethanabotla John, Kuhn, Engineering surface and morphology of La/WO3 for electrochemical oxygen reduction. CrystEngComm. 22, 2397–2405 (2020). https://doi.org/10.1039/D0CE00073F

    Article  Google Scholar 

  36. R. Ponnusamy, B. Chakraborty, C.S. Rout, Pd-doped WO3 nanostructures as potential glucose sensor with insight from electronic structure simulations. J. Phys. Chem. B 122, 2737–2746 (2018). https://doi.org/10.1021/acs.jpcb.7b11642

    Article  CAS  Google Scholar 

  37. Q. Liu, Y. Liu, C. Li, J. Li, H. He, Y. Li, Hydrothermal Sm-doped tungsten oxide vertically plate-like array photoelectrode and its enhanced photoelectrocatalytic efficiency for degradation of organic dyes. J. Mater. Sci.: Mater. Electron. 28, 4004–4013 (2017). https://doi.org/10.1007/s10854-016-6013-0

    Article  CAS  Google Scholar 

  38. T. Govindaraj, C. Mahendran, R. Marnadu, M. Shkir, V.S. Manikandan, The remarkably enhanced visible-light-photocatalytic activity of hydrothermally synthesized WO3 nanorods: an effect of Gd doping. Ceram. Int. 47, 4267–4278 (2021). https://doi.org/10.1016/j.ceramint.2020.10.004

    Article  CAS  Google Scholar 

  39. T. Govindaraj, C. Mahendran, V.S. Manikandan, J. Archana, M. Navaneethan, Enhanced visible-light-driven photocatalytic activity of Ce doped WO3 nanorods for rhodamine B dye degradation. Mater. Lett. 305, 130705 (2021). https://doi.org/10.1016/j.matlet.2021.130705

    Article  CAS  Google Scholar 

  40. T. Govindaraj, C. Mahendran, J. Chandrasekaran, V. Manikandan, M. Shkir, El E. Sayed Massoud, N.S. Kumar, W.K. Kim, S. Gedi, Effect of incorporation of La into WO3 nanorods for improving photocatalytic activity under visible light irradiation. J. Phys. Chem. Solids. 170, 110908 (2022). https://doi.org/10.1016/j.jpcs.2022.110908

    Article  CAS  Google Scholar 

  41. A. Haroon, A.S. Ahmed, An insight into the microstructural properties and dielectric behavior of Ce doped WO3 nanoparticles. Phys. B: Condens. Matter. 657, 414798 (2023). https://doi.org/10.1016/j.physb.2023.414798

    Article  CAS  Google Scholar 

  42. X. Sang, W. Ruo-tian, Tribological of Eu-doped WO3 coated with SiO2 transfer film formation on sliding surface. Surf. Eng. 38, 10–12 (2022). https://doi.org/10.1080/02670844.2023.2172705

    Article  CAS  Google Scholar 

  43. J. Hyeeun Yang, R.H. Yu, Jeong, J. Boo, Enhanced electrochromic properties of nanorod based WO3 thin films with inverse opal structure. Thin Solid Films 660, 596–600 (2018). https://doi.org/10.1016/j.tsf.2018.05.012

    Article  CAS  Google Scholar 

  44. M. Rastgoo-deylami, M. Javanbakht, H. Omidvar, K. Hooshyari, P. Salarizadeh, M. Bagher, Nickel-doped monoclinic WO3 as high performance anode material for rechargeable lithium ion battery. J. Electroanal. Chem. 894, 115383 (2021). https://doi.org/10.1016/j.jelechem.2021.115383

    Article  CAS  Google Scholar 

  45. D.B. Migas, V.L. Shaposhnikov, V.N. Rodin, V.E. Borisenko, Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3. J. Appl. Phys. 108, 093713 (2010). https://doi.org/10.1063/1.3505688

    Article  CAS  Google Scholar 

  46. D. Sánchez-Martínez, A.M. de la Cruz, E. López-Cuéllar, Synthesis of WO3 nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties. Mater. Res. Bull. 48, 691–697 (2013). https://doi.org/10.1016/j.materresbull.2012.11.024

    Article  CAS  Google Scholar 

  47. Z. Jun. He, Y. Xiong, W. Du, S. Lu, Tian, Morphology effect of tungsten oxide on Ce/W catalyst for selective catalytic reduction of NO with NH3: influence of structure-directing agents. J. Energy Inst. 94, 85–95 (2021). https://doi.org/10.1016/j.joei.2020.11.003

    Article  CAS  Google Scholar 

  48. S.K. Sen, S. Dutta, L. Paik, T.C. Paul, M.S. Manir, M. Hossain, M.N. Hossain, Dy-doped MoO3 nanobelts synthesized via hydrothermal route: influence of Dy contents on the structural, morphological and optical properties. J. Alloys Compd. 876, 160070 (2021). https://doi.org/10.1016/j.jallcom.2021.160070

    Article  CAS  Google Scholar 

  49. V. Balasubramani, J. Chandrasekaran, R. Marnadu, P. Vivek, S. Maruthamuthu, S. Rajesh, Impact of Annealing temperature on Spin Coated V2O5 Thin Films as Interfacial Layer in Cu/V2O5/n-Si Structured Schottky Barrier Diodes. J. Inorg. Organomet. Polym Mater. 29, 1533–1547 (2019). https://doi.org/10.1007/s10904-019-01117-z

    Article  CAS  Google Scholar 

  50. T. Sasikala, K. Shanmugasundaram, P. Thirunavukkarasu, J. Chandrasekaran, P. Vivek, R. Marnadu, M.A. Manthrammel, S. Gunasekaran, Characterization of jet nebulizer spray pyrolysis coated MoS2 thin films and fabrication of p-Si/n-MoS2 junction diodes for optoelectronic application. Inorg. Chem. Commun. (2021). https://doi.org/10.1016/j.inoche.2021.108701

    Article  Google Scholar 

  51. P. Vivek, J. Chandrasekaran, R. Marnadu, S. Maruthamuthu, V. Balasubramani, Incorporation of Ba2+ ions on the properties of MoO3 thin films and fabrication of positive photo-response Cu/Ba–MoO3/p-Si structured diodes. Superlattices Microstruct. 133, 106197 (2019). https://doi.org/10.1016/j.spmi.2019.106197

    Article  CAS  Google Scholar 

  52. D. Sundeep, A. Gopala Krishna, R.V.S.S.N. Ravikumar et al., Spectral characterization of mechanically synthesized MoO3–CuO nanocomposite. Internationals nano Letters 6, 119–128 (2016). https://doi.org/10.1007/s40089-015-0178-z

    Article  CAS  Google Scholar 

  53. S.K. Sen, T.C. Paul, S. Dutta, M.N. Hossain, M.N.H. Mia, XRD profile and optical properties analysis of Ag-doped h-MoO3 nanorods synthesized via hydrothermal method. J. Mater. Sci: Mater. Electron. 31, 1768–1786 (2020). https://doi.org/10.1007/s10854-019-02694-y

    Article  CAS  Google Scholar 

  54. A. Chithambararaj, D. Bhagya Mathi, N. Rajeswari Yogamalar, A. Chandra Bose, Structural evolution and phase transition of [NH4]6Mo7O24.4H2O to 2D layered MoO3–x. Mater. Res. Expres 2, 055004 (2015). https://doi.org/10.1088/2053-1591/2/5/055004

    Article  CAS  Google Scholar 

  55. M. Raja, J. Chandrasekaran, M. Balaji, Evaluation of microstructural and electrical properties of WO3−x Thin Films for P-Si/N-WO3−x/Ag junction diodes. Optik 127, 11009–11019 (2016). https://doi.org/10.1016/j.ijleo.2016.08.079

    Article  CAS  Google Scholar 

  56. R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, V. Balasubramani, P. Vivek, R. Suresh, Ultra-high photoresponse with superiorly sensitive metal-insulator-semiconductor (MIS) structured diodes for UV photodetector application. Appl. Surf. Sci. 480, 308–322 (2019). https://doi.org/10.1016/j.apsusc.2019.02.214

    Article  CAS  Google Scholar 

  57. N. Senthilkumar, M. Sethu Raman, J. Chandrasekaran, R. Priya, M. Chavali, R. Suresh, Effect of post-growth annealing on thestructural, optical and electrical properties of V2O5 nanorods and its fabrication, characterization of V2O5/p-Si junction diode. Mater. Sci. Semicond. Process. 41, 497–507 (2016)

    Article  Google Scholar 

  58. M. Raja, J. Chandrasekaran, M. Balaji, P. Kathirvel, Investigation of microstructural and optical and dc electrical properties of spin coated Al:WO3 thin films for n-Al:WO3/p-Si heterojunction diodes. Optik 145, 169–180 (2017). https://doi.org/10.1016/j.ijleo.2017.07.049

    Article  CAS  Google Scholar 

  59. B. Gowtham, V. Balasubramani, S. Ramanathan, M. Ubaidullah, S.F. Shaikh, G. Sreedevi, Dielectric relaxation, electrical conductivity measurements, electric modulus and impedance analysis of WO3 nanostructures. J. Alloys Compd. 888, 161490 (2021). https://doi.org/10.1016/j.jallcom.2021.161490

    Article  CAS  Google Scholar 

  60. T. Govindaraj, C. Mahendran, V.S. Manikandan, R. Suresh, One-pot synthesis of tungsten oxide nanostructured for enhanced photocatalytic organic dye degradation. J. Mater. Sci.: Mater. Electron. 31, 17535–17549 (2020). https://doi.org/10.1007/s10854-020-04309-3

    Article  CAS  Google Scholar 

  61. T. Subramani, G. Thimmarayan, B. Balraj, N. Chandrasekar, M. Palanisamy, S. Kumar Nagarajan, S. Amirtharajan, M. Kumar, C. Sivakumar, Surfactants assisted synthesis of WO3 nanoparticles with improved photocatalytic and antibacterial activity: a strong impact of morphology. Inorg. Chem. Commun. 142, 109709 (2022). https://doi.org/10.1016/j.inoche.2022.109709

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Deanship of Scientific Research at King Khalid University, KSA, for funding this work through a research group program under grant number RGP.2/188/44.

Funding

The Deanship of Scientific Research funded this study at King Khalid University, KSA (Grant No. RGP.2/188/44).

Author information

Authors and Affiliations

Authors

Contributions

MM: Processed the samples, compiled and analyzed the data, and wrote the manuscript. VRMR, and WKK: Conceptualization and validation IMA: Collected the samples and data analysis. TG and MS: Reviewing and editing.

Corresponding authors

Correspondence to M. Mohanraj, Vasudeva Reddy Minnam Reddy or Woo Kyoung Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanraj, M., Ashraf, I.M., Shkir, M. et al. Investigation on the microstructural, optical, electrical, and photocatalytic properties of WO3 nanoparticles: an effect of Ce doping concentrations. J Mater Sci: Mater Electron 34, 1961 (2023). https://doi.org/10.1007/s10854-023-11386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11386-7

Navigation