Skip to main content
Log in

Improvement in photovoltaic performance of dye-sensitized solar cell using ruthenium as dopant into titania

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ru-doped TiO2 compact layer was deposited on conducting substrate fluorine-doped tin oxide electrode by hydrothermal technique for dye-sensitized solar cell application. The solar cell’s characteristics such as open circuit voltage, current density–voltage (JV) characteristics, and electrochemical impedance spectra, showed that Ruthenium when doped into bare TiO2 acts as a blocking layer that reduces the charge recombination from the transparent conducting oxide layer. Here, we have synthesized bare and Ru-doped TiO2 by a hydrothermal method for dye sensitized solar cell application. Recently, the research of the DSSCs has advanced by leaps and bounds, especially in the field of pursuing a cost-effective solution process with high power conversion efficiency. Nanorods are efficient electron transport layers with a high surface area. The nanorods were characterized by various techniques, such as X-ray powder diffraction, scanning electron microscopy, UV‒Visible spectroscopy, Raman spectroscopy, solar cell characterization, and impedance spectroscopy. The impedance study provides detailed information about the recombination losses at various interfaces. It is observed that there is a 20% increase in photovoltaic performance after 3% Ru doping in TiO2. The efficiency received for 3% Ru doped TiO2 layers was obtained to be 3.54% which increases the charge transfer and collection capacity of the solar cell. It also affects the morphology of compact layer 3% Ru doped TiO2 well-aligned nanorods are observed on doping of 3% ruthenium into TiO2. Results show that Ru-doped TiO2 can be an alternative to the bare TiO2 compact layer to obtain efficient solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. M. Shakeel Ahmad, A.K. Pandey, N. Abd, Rahim, Renew. Sustain. Energy Rev. 77, 89 (2017)

    Article  CAS  Google Scholar 

  2. N. Naik, P. Suresh, S. Yadav, M.P. Nisha, J.L. Arias-Gonzáles, J.C. Cotrina-Aliaga, R. Bhat, M.D. Jalageri, Y. Kaushik, A.B. Kunjibettu, Energies 16, 3348 (2023)

    Article  CAS  Google Scholar 

  3. A. Müller, M. Ghosh, R. Sonnenschein, P. Woditsch, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 134, 257 (2006)

    Article  Google Scholar 

  4. A.A.F. Husain, W.Z.W. Hasan, S. Shafie, M.N. Hamidon, S.S. Pandey, Renew. Sustain. Energy Rev. 94, 779 (2018)

    Article  CAS  Google Scholar 

  5. A.H.H. Ali, H.A.R.S. Zeid, H.M.G. AlFadhli, Sustain. Energy Technol. Assess. 22, 25 (2017)

    Google Scholar 

  6. N. Masud, H.K. Kim, ACS Omega. 8, 6139 (2023)

    Article  CAS  Google Scholar 

  7. J. Wang, Z. Peng, J. Huang, Y. Zhang, X. Zhang, Y. Wang, Y. Fu, W. Li, J. Chen, K. Chen, Sol. Energy Mater. Sol. Cells. 257, 112348 (2023)

    Article  CAS  Google Scholar 

  8. J. Chen, F.Q. Bai, J. Wang, L. Hao, Z.F. Xie, Q.J. Pan, H.X. Zhang, Dye. Pigment. 94, 459 (2012)

    Article  CAS  Google Scholar 

  9. A. Omar, M.S. Ali, N. Abd, Rahim, Sol. Energy. 207, 1088 (2020)

    Article  CAS  Google Scholar 

  10. F. De Angelis, S. Fantacci, A. Selloni, M.K. Nazeeruddin, M. Grätzel, J. Phys. Chem. C 114, 6054 (2010)

    Article  Google Scholar 

  11. S. Lee, J.H. Noh, H.S. Han, D.K. Yim, D.H. Kim, J.K. Lee, J.Y. Kim, H.S. Jung, K.S. Hong, J. Phys. Chem. C 113, 6878 (2009)

    Article  CAS  Google Scholar 

  12. L. Kavan, Z. Vlckova Zivcova, M. Zlamalova, S.M. Zakeeruddin, M. Grätzel, J. Phys. Chem. C 124, 6512 (2020)

    Article  CAS  Google Scholar 

  13. C.V. Jagtap, V.S. Kadam, S.R. Jadkar, H.M. Pathan, ES Energy Environ, 3, 60 (2019)

  14. M. Alqahtani, A. Kafizas, S. Sathasivam, M. Ebaid, F. Cui, A. Alyamani, H.H. Jeong, T. Chun Lee, P. Fischer, I. Parkin, M. Grätzel, J. Wu, ChemSusChem 13, 6028 (2020)

    Article  CAS  Google Scholar 

  15. S. Umale, V. Sudhakar, S.M. Sontakke, K. Krishnamoorthy, A.B. Pandit, Mater. Res. Bull. 109, 222 (2019)

    Article  CAS  Google Scholar 

  16. B. Ünlü, M. Özacar, Sol. Energy. 196, 448 (2020)

    Article  Google Scholar 

  17. T.S. Bramhankar, S.S. Pawar, J.S. Shaikh, V.C. Gunge, N.I. Beedri, P.K. Baviskar, H.M. Pathan, P.S. Patil, R.C. Kambale, R.S. Pawar, J. Alloys Compd. 817, 152810 (2020)

    Article  CAS  Google Scholar 

  18. C. Liu, C. Xu, W. Wang, L. Chen, X. Li, Y. Wu, Nanomaterials 13, 794 (2023)

    Article  CAS  Google Scholar 

  19. X. Zhang, F. Liu, Q.L. Huang, G. Zhou, Z.S. Wang, J. Phys. Chem. C 115, 12665 (2011)

    Article  CAS  Google Scholar 

  20. S. Bera, A. Saha, S. Mondal, A. Biswas, S. Mallick, R. Chatterjee, S. Roy, Mater. Adv. 3, 5234 (2022)

    Article  CAS  Google Scholar 

  21. N.S. Lewis, J. Phys. Chem. B 102, 4843 (1998)

    Article  CAS  Google Scholar 

  22. K. Park, Q. Zhang, D. Myers, G. Cao, ACS Appl. Mater. Interfaces. 5, 1044 (2013)

    Article  CAS  Google Scholar 

  23. R. Katoh, A. Furube, J. Photochem. Photobiol C Photochem. Rev. 20, 1 (2014)

    Article  CAS  Google Scholar 

  24. D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, Energy Strateg. Rev. 24, 38 (2019)

    Article  Google Scholar 

  25. K. Sharma, V. Sharma, S.S. Sharma, Nanoscale Res. Lett. 13, 381 (2018)

    Article  Google Scholar 

  26. N.S. Noorasid, F. Arith, A.N. Mustafa, M.A. Azam, S. Mahalingam, P. Chelvanathan, N. Amin, Optik (Stuttg). 254, 168089 (2022)

    Article  CAS  Google Scholar 

  27. J. Cai, M. Wu, Y. Wang, H. Zhang, M. Meng, Y. Tian, X. Li, J. Zhang, L. Zheng, J. Gong, Chem. 2, 877 (2017)

    Article  CAS  Google Scholar 

  28. T. Sakthivel, K.A. Kumar, J. Senthilselvan, K. Jagannathan, J. Mater. Sci. Mater. Electron. 29, 2228 (2018)

    Article  CAS  Google Scholar 

  29. J.H. Kim, K.J. Moon, J.M. Kim, D. Lee, S.H. Kim, Sol. Energy. 113, 251 (2015)

    Article  Google Scholar 

  30. A.A. Shah, A.A. Umar, M.M. Salleh, Electrochim. Acta. 195, 134 (2016)

    Article  CAS  Google Scholar 

  31. A.A. Khan, M.Y. Syarifah Adilah, M.H. Mamat, S.Z. Yahaya, S. Setumin, M.N. Ibrahim, K. Daud, M.H. Abdullah, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc 274, 121140 (2022)

    Article  CAS  Google Scholar 

  32. W.C. Chang, Y.Y. Cheng, W.C. Yu, Y.C. Yao, C.H. Lee, H.H. Ko, Nanoscale Res. Lett. 7, 1 (2012)

    Article  Google Scholar 

  33. V. Tanvi, A. Saxena, O. Singh, A. Prakash, A.K. Mahajan, K.P. Debnath, Muthe, S.C. Gadkari, Sol. Energy Mater. Sol. Cells. 170, 127 (2017)

    Article  CAS  Google Scholar 

  34. A. Listorti, B. O’Regan, J.R. Durrant, Chem. Mater. 23, 3381 (2011)

    Article  CAS  Google Scholar 

  35. Y.B. Tang, C.S. Lee, J. Xu, Z.T. Liu, Z.H. Chen, Z. He, Y.L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, ACS Nano. 4, 3482 (2010)

    Article  CAS  Google Scholar 

  36. Z. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coord. Chem. Rev. 248, 1381 (2004)

    Article  CAS  Google Scholar 

  37. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, Nanoscale. 2, 45 (2010)

    Article  CAS  Google Scholar 

  38. N.A. Karim, U. Mehmood, H.F. Zahid, T. Asif, Sol. Energy. 185, 165 (2019)

    Article  CAS  Google Scholar 

  39. A.K. Srivastava, J.S. Tawale, R. Verma, D. Agarwal, C. Sharma, A. Kumar, M.K. Gupta, Mater. Adv. 3, 8030 (2022)

    Article  CAS  Google Scholar 

  40. J.H. Luo, Y.F. Mo, Z.S. Li, F.Y. Du, Mater. Res. Express 8, 015906 (2021)

    Article  CAS  Google Scholar 

  41. V. Kadam, C. Jagtap, T. Alshahrani, F. Khan, M.T. Khan, N. Ahmad, A. Al-Ahmed, H. Pathan, J. Mater. Sci. Mater. Electron. 32, 28214 (2021)

    Article  CAS  Google Scholar 

  42. C.V. Jagtap, V.S. Kadam, M.A. Mahadik, J.S. Jang, N.B. Chaure, H.M. Pathan, Eng. Sci. 17, 133 (2022)

    CAS  Google Scholar 

  43. S.S. Sahoo, S. Salunke-Gawali, C.V. Jagtap, P. Bhujbal, H.M. Pathan, J. Sci. Adv. Mater. Devices. 7, 100513 (2022)

    Article  CAS  Google Scholar 

  44. M. Vogel, O. Stenzel, R. Petrich, G. Schaarschmidt, W. Scharff, Thin Solid Films. 227, 74 (1993)

    Article  CAS  Google Scholar 

  45. Y. Wang, Y. Hao, H. Cheng, J. Ma, B. Xu, W. Li, S. Cai, J. Mater. Sci. 34, 2773 (1999)

    Article  CAS  Google Scholar 

  46. J.B. Baxter, Vac. Sci. Technol. A 30, 020801 (2012)

    Article  Google Scholar 

  47. K. Keis, J. Lindgren, S.E. Lindquist, A. Hagfeldt, Langmuir. 16, 4688 (2000)

    Article  CAS  Google Scholar 

  48. B. Wenger, M. Grätzel, J.E. Moser, J. Am. Chem. Soc. 127, 12150 (2005)

    Article  CAS  Google Scholar 

  49. R. Katoh, A. Furube, A.V. Barzykin, H. Arakawa, M. Tachiya, Coord. Chem. Rev. 248, 1195 (2004)

    Article  CAS  Google Scholar 

  50. P. Sanjay, K. Deepa, J. Madhavan, S. Senthil, Opt. Mater. 83, 192 (2018)

    Article  CAS  Google Scholar 

  51. F.I. Lizama-Tzec, R. García-Rodríguez, G. Rodríguez-Gattorno, E.J. Canto-Aguilar, A.G. Vega-Poot, B.E. Heredia-Cervera, J. Villanueva-Cab, N. Morales-Flores, U. Pal, G. Oskam, RSC Adv. 6, 37424 (2016)

    Article  CAS  Google Scholar 

  52. S.V. Desarada, K.B. Chavan, N.B. Chaure, J. Electron. Mater. 52, 3413 (2023)

    Article  CAS  Google Scholar 

  53. S.V. Desarada, K.B. Chavan, S.N. Chaure, N.B. Chaure, ECS J. Solid State Sci. Technol. 12, 085004 (2023)

    Article  Google Scholar 

  54. T. Runčevski, C.M. Brown, Cryst. Growth Des. 21, 4821 (2021)

    Article  Google Scholar 

  55. T. Mazza, E. Barborini, P. Piseri, P. Milani, D. Cattaneo, A. Li Bassi, C.E. Bottani, C. Ducati, Phys. Rev. B - Condens. Matter Mater. Phys. 75, 1 (2007)

    Article  Google Scholar 

  56. A.G. Ilie, M. Scarisoareanu, I. Morjan, E. Dutu, M. Badiceanu, I. Mihailescu, Appl. Surf. Sci. 417, 93 (2017)

    Article  CAS  Google Scholar 

  57. X.Y. Guo, D.P. Xu, Z.H. Ding, W.H. Su, Chin. Phys Lett. 23, 1645 (2006)

    Article  CAS  Google Scholar 

  58. A. Atilgan, A. Yildiz, Int. J. Energy Res. 46, 14558 (2022)

    Article  CAS  Google Scholar 

  59. M. Balakrishnan, R. John, J. Mater. Sci. Mater. Electron. 32, 5295 (2021)

    Article  CAS  Google Scholar 

  60. M. Ismael, New. J. Chem. 43, 9596 (2019)

    Article  CAS  Google Scholar 

  61. M.B.R. Prasad, V. Kadam, O. Joo, H.M. Pathan, Mater. Chem. Phys. 194, e170 (2017)

    Google Scholar 

  62. V.P. Bhalekar, P.K. Baviskar, R.M.B. Prasad, B.M. Palve, V.S. Kadam, H.M. Pathan, Eng. Sci. 7, 38 (2019)

    Google Scholar 

  63. S. So, K. Lee, P. Schmuki, Phys. Status Solidi-Rapid Res. Lett. 6, 169 (2012)

    Article  CAS  Google Scholar 

  64. T. Rajaramanan, M. Natarajan, P. Ravirajan, M. Senthilnanthanan, D. Velauthapillai, Energies. 13, 1 (2020)

    Article  Google Scholar 

  65. N. Balis, V. Dracopoulos, K. Bourikas, P. Lianos, Electrochim. Acta 91, 246 (2013)

    Article  CAS  Google Scholar 

  66. S. Sarker, A.J.S. Ahammad, H.W. Seo, D.M. Kim, Int. J. Photoenergy (2014). https://doi.org/10.1155/2014/851705

    Article  Google Scholar 

  67. P.S. Tamboli, M.B.R. Prasad, V.S. Kadam, R.S. Vhatkar, H.M. Inamuddin, Pathan, S.S. Mahajan, Sol. Energy Mater. Sol. Cells. 161, 96 (2017)

    Article  CAS  Google Scholar 

  68. S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, M.E. Orazem, Nat. Rev. Methods Prim. 1, 41 (2021)

    Article  CAS  Google Scholar 

  69. Q. Wang, J.E. Moser, M. Grätzel, J. Phys. Chem. B 109, 14945 (2005)

    Article  CAS  Google Scholar 

  70. O. Almora, C.I. Cabrera, J. Garcia-Cerrillo, T. Kirchartz, U. Rau, C.J. Brabec, Adv. Energy Mater. 11, 2100022 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Solar Energy Research and Development (SERD) Department of Science and Technology (DST), Government of India, for financial support through the Major Research project vide Sanction order DST/TMD/CERI/RES/2020/47 (G). CVJ is also grateful to the Kiran Division, Department of Science and Technology, Government of India, for partial financial support through Women Scientist Scheme-A, vide Sanction order SR/WOS-A/PM-11/2019(G). The authors are also thankful to Dr Sachin Desarda for the Rietveld refinement analysis.

Funding

This research was funded by Solar Energy Research and Development (SERD) Department of Science and Technology (DST), Government of India, for financial support through the Major Research project vide Sanction order DST/TMD/CERI/RES/2020/47 (G) and  Kiran Division, Department of Science and Technology, Government of India, for partial financial support through Women Scientist Scheme-A, vide Sanction order SR/WOS-A/PM-11/2019(G).

Author information

Authors and Affiliations

Authors

Contributions

CJ, VK, and HP contributed to the study conception, design, analysis, material preparation, data collection, and manuscript writing. SJ and SP helped to analyze the data and finalize the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Habib Pathan.

Ethics declarations

Competing interests

Authors do not have any conflict of interest.

Ethical approval

Authors agree all the Ethical Standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagtap, C., Kadam, V., Jadkar, S. et al. Improvement in photovoltaic performance of dye-sensitized solar cell using ruthenium as dopant into titania. J Mater Sci: Mater Electron 34, 1935 (2023). https://doi.org/10.1007/s10854-023-11308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11308-7

Navigation