Skip to main content
Log in

Effects of different precursors on the aging and electrocaloric properties of Mn-doped Ba0.95Sr0.05TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the effects of different types of Mn precursors (MnO2 and Mn2O3) and sintering temperature on the defect dipole formation, ferroelectric aging and electrical properties were investigated by using Ba0.95Sr0.05TiO3 ceramics as the base. Both Mn precursors were substituted to the Ti-site as 1 mol% and two different sintering temperatures of 1325 and 1400 °C were used to study the effect of grain size. We deduced that slightly higher amounts of Mn2+ can be incorporated into the perovskite structure when MnO2 is used as the precursor, by using X-ray diffraction and electron paramagnetic resonance spectroscopy. Mn-doped samples sintered at 1325 °C age faster than those sintered at 1400 °C. Aging caused a decrease in the electrocaloric effect whereas Mn-doping increased it. This study shows that Mn precursor used for the acceptor doping affects the amount of Mn incorporated into the structure and therefore electrical properties of the resulting ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. N. Luo, S. Zhang, Q. Li, Q. Yan, Y. Zhang, T. Ansell, J. Luo, T.R. Shrout, Crystallographic dependence of internal bias in domain engineered Mn-doped relaxor-PbTiO3 single crystals. J. Mater. Chem. C 4, 4568–4576 (2016). https://doi.org/10.1039/C6TC00875E

    Article  CAS  Google Scholar 

  2. J. Zeng, K. Zhao, X. Shi, X. Ruan, L. Zheng, G. Li, Large strain induced by the alignment of defect dipoles in (Bi3+, Fe3+) co-doped Pb (Zr,Ti)O3 ceramics. Scr. Mater. 142, 20–22 (2018). https://doi.org/10.1016/j.scriptamat.2017.08.013

    Article  CAS  Google Scholar 

  3. Y.-J. Dai, Y.-J. Zhao, Z. Zhao, Z.-H. Zhao, Q.-W. Zhou, X.-W. Zhang, High electrostrictive strain induced by defect dipoles in acceptor-doped (K0.5Na0.5)NbO3 ceramics. J. Phys. D Appl. Phys. 49, 275303 (2016). https://doi.org/10.1088/0022-3727/49/27/275303

    Article  CAS  Google Scholar 

  4. D. Xu, W. Li, L. Wang, W. Wang, W. Cao, W. Fei, Large piezoelectric properties induced by doping ionic pairs in BaTiO3 ceramics. Acta Mater. 79, 84–92 (2014). https://doi.org/10.1016/j.actamat.2014.07.023

    Article  CAS  Google Scholar 

  5. M. Takahashi, Space charge effect in lead zirconate titanate ceramics caused by the addition of impurities. Jpn. J. Appl. Phys. 9(10), 1236 (1970). https://doi.org/10.1143/JJAP.31.3058

    Article  CAS  Google Scholar 

  6. W. Warren, D. Dimos, B. Tuttle, R. Nasby, G. Pike, Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue. Appl. Phys. Lett. 65, 1018–1020 (1994). https://doi.org/10.1063/1.112211

    Article  CAS  Google Scholar 

  7. X. Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91–94 (2004). https://doi.org/10.1038/nmat1051

    Article  CAS  Google Scholar 

  8. L. Zhang, W. Chen, X. Ren, Large recoverable electrostrain in Mn-doped (Ba,Sr)TiO3 ceramics. Appl. Phys. Lett. 85, 5658–5660 (2004). https://doi.org/10.1063/1.1829394

    Article  CAS  Google Scholar 

  9. K. Vani, A. Anil, V. Kumar, Enhanced electrostrain in Cu2+-doped Ba0.8Sr0.2TiO3. Ferroelectrics 550, 136–140 (2019). https://doi.org/10.1080/00150193.2019.1652503

    Article  CAS  Google Scholar 

  10. Z. Zhao, Y. Dai, X. Li, Z. Zhao, X. Zhang, The evolution mechanism of defect dipoles and high strain in MnO2-doped KNN lead-free ceramics. Appl. Phys. Lett. 108, 172906 (2016). https://doi.org/10.1063/1.4948305

    Article  CAS  Google Scholar 

  11. M. Wu, Q. Zhu, J. Li, D. Song, H. Wu, M. Guo, J. Gao, Y. Bai, Y. Feng, S.J. Pennycook, Electrocaloric effect in ferroelectric ceramics with point defects. Appl. Phys. Lett. 114, 142901 (2019). https://doi.org/10.1063/1.5090183

    Article  CAS  Google Scholar 

  12. D. Hall, M. Ben-Omran, Ageing of high field dielectric properties in-based piezoceramics. J. Phys. Condens. Matter 10, 9129 (1998). https://doi.org/10.1088/0953-8984/10/40/016

    Article  CAS  Google Scholar 

  13. D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267 (1998). https://doi.org/10.1088/0034-4885/61/9/002

    Article  CAS  Google Scholar 

  14. D. Sun, X. Ren, K. Otsuka, Stabilization effect in ferroelectric materials during aging in ferroelectric state. Appl. Phys. Lett. 87, 142903 (2005). https://doi.org/10.1063/1.2084343

    Article  CAS  Google Scholar 

  15. X. Ren, K. Otsuka, Universal symmetry property of point defects in crystals. Phys. Rev. Lett. 85, 1016 (2000). https://doi.org/10.1103/PhysRevLett.85.1016

    Article  CAS  Google Scholar 

  16. S.H. Cha, Y.H. Han, Effects of Mn doping on dielectric properties of Mg-doped BaTiO3. J. Appl. Phys. 100, 104102 (2006). https://doi.org/10.1063/1.2386924

    Article  CAS  Google Scholar 

  17. S. Chikada, T. Kubota, A. Honda, S. Higai, Y. Motoyoshi, N. Wada, K. Shiratsuyu, Interactions between Mn dopant and oxygen vacancy for insulation performance of BaTiO3. J. Appl. Phys. 120, 142122 (2016). https://doi.org/10.1063/1.4963381

    Article  CAS  Google Scholar 

  18. L. Zhang, W. Liu, W. Chen, X. Ren, J. Sun, E.A. Gurdal, S.O. Ural, K. Uchino, Mn dopant on the domain stabilization effect of aged BaTiO3 and PbTiO3-based piezoelectrics. Appl. Phys. Lett. 101, 242903 (2012). https://doi.org/10.1063/1.4770311

    Article  CAS  Google Scholar 

  19. J. Li, J. Lv, D. Zhang, L. Zhang, X. Hao, M. Wu, B.-X. Xu, M. Otonicar, T. Lookman, B. Dkhil, Doping-induced polar defects improve the electrocaloric performance of Ba0.9Sr0.1Hf0.1Ti0.9O3. Phys. Rev. Appl. 16, 014033 (2021). https://doi.org/10.1103/PhysRevApplied.16.014033

    Article  CAS  Google Scholar 

  20. N. Xiang, J. Xiaodong, X. Chen, H. Li, W. Liang, Y. Yingbang, T. Tao, B. Liang, L. Sheng-Guo, Enhanced electrocaloric effect at room temperature in Mn2+ doped lead-free (Ba,Sr)TiO3 ceramics via a direct measurement. J. Adv. Ceram. 10, 482–492 (2021). https://doi.org/10.1007/s40145-020-0450-1

    Article  CAS  Google Scholar 

  21. H.-X. Li, X.-D. Jian, X. Niu, Y.-B. Yao, T. Tao, B. Liang, S.-G. Lu, Direct measurement of enhanced electrocaloric effect in Mn2+ doped lead-free Ba(Zr,Ti)O3 ceramics. Scr. Mater. 176, 67–72 (2020). https://doi.org/10.1016/j.scriptamat.2019.09.007

    Article  CAS  Google Scholar 

  22. W. Chen, X. Zhao, J. Sun, L. Zhang, L. Zhong, Effect of the Mn doping concentration on the dielectric and ferroelectric properties of different-routes-fabricated BaTiO3-based ceramics. J. Alloys Compd. 670, 48–54 (2016). https://doi.org/10.1016/j.jallcom.2016.01.187

    Article  CAS  Google Scholar 

  23. A. Berksoy-Yavuz, E. Mensur-Alkoy, E. Erdem, S. Alkoy, Electrical properties, EPR analyses and defect chemistry of Mn-doped 0.675 PMN-0.325 PT piezoceramics. Ceram. Int. 46, 28980–28986 (2020). https://doi.org/10.1016/j.ceramint.2020.08.069

    Article  CAS  Google Scholar 

  24. T. Kamiya, T. Suzuki, T. Tsurumi, M. Daimon, Effects of manganese addition on piezoelectric properties of Pb(Zr0.5Ti0.5)O3. Jpn. J. Appl. Phys. 31, 3058 (1992).  https://doi.org/10.1143/JJAP.31.3058

    Article  CAS  Google Scholar 

  25. T. Correia, Q. Zhang (Eds), Electrocaloric materials. (Springer, 2014). https://doi.org/10.1007/978-3-642-40264-7

  26. A. Torelló, E. Defay, Electrocaloric coolers: a review. Adv. Electron. Mater. 8, 2101031 (2022). https://doi.org/10.1002/aelm.202101031

    Article  CAS  Google Scholar 

  27. B. H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001). https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  28. Y. Guo, Z. Yan, N. Zhang, W. Cheng, J.-M. Liu, Ferroelectric aging behaviors of BaTi0.995Mn0.005O3 ceramics: grain size effects. Appl. Phys. A 107, 243–248 (2012). https://doi.org/10.1007/s00339-011-6750-0

    Article  CAS  Google Scholar 

  29. Y. Guo, J.-M. Liu, Y. Guo, T. Wei, Y. Guo, N. Zhang, External field effects on aging phenomenon of acceptor-doped BaTiO3 ceramics. AIP Adv. 5, 097107 (2015). https://doi.org/10.1063/1.4930259

    Article  CAS  Google Scholar 

  30. J. Wang, Y. Zhao, X. Shi, L. Zhang, Effect of Mn dopant on the grain size and electrical properties of (Ba,Sr)TiO3 ceramics. J. Mater. Sci. Mater. Electron. 29, 11575–11580 (2018). https://doi.org/10.1007/s10854-018-9254-2

    Article  CAS  Google Scholar 

  31. Y. Hou, M. Zhu, F. Gao, H. Wang, B. Wang, H. Yan, C. Tian, Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics. J. Am. Ceram. Soc. 87, 847–850 (2004). https://doi.org/10.1111/j.1551-2916.2004.00847.x

    Article  CAS  Google Scholar 

  32. M. Jiang, Q. Lin, D. Lin, Q. Zheng, X. Fan, X. Wu, H. Sun, Y. Wan, L. Wu, Effects of MnO2 and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. J. Mater. Sci. 48, 1035–1041 (2013). https://doi.org/10.1007/s10853-012-6835-y

    Article  CAS  Google Scholar 

  33. L. Chen, H. Fan, S. Zhang, Investigation of MnO2-doped (Ba,Ca)TiO3 lead‐free ceramics for high power piezoelectric applications. J. Am. Ceram. Soc. 100, 3568–3576 (2017). https://doi.org/10.1111/jace.14894

    Article  CAS  Google Scholar 

  34. T. Kolodiazhnyi, A. Petric, Analysis of point defects in polycrystalline BaTiO3 by electron paramagnetic resonance. J. Phys. Chem. Solids 64, 953–960 (2003). https://doi.org/10.1016/S0022-3697(02)00454-7

    Article  CAS  Google Scholar 

  35. D.Y. Lu, X.Y. Sun, A novel electron paramagnetic resonance phenomenon in a barium stronium titanate ceramic. Adv. Mater. Res. 295-297, 1050–1054, (2011). https://doi.org/10.4028/www.scientific.net/AMR.295-297.1050

    Article  CAS  Google Scholar 

  36. J. John, M. Dhananjaya, S. Suresh, S. Savitha Pillai, M. Sahoo, O. Hussain, R. Philip, V. Mahadevan Pillai, Effect of manganese doping on the structural, morphological, optical, electrical, and magnetic properties of BaSnO3. J. Mater. Sci. Mater. Electron. 31, 11159–11176 (2020). https://doi.org/10.1007/s10854-020-03665-4

    Article  CAS  Google Scholar 

  37. H. Kaftelen, D.E. Kanar, S. Repp, S. Weber, E. Erdem, Investigation of Mn-doped sodium-potassium niobate ((K,Na)NbO3) ceramics by EPR and impedance spectroscopic methods. Ferroelectrics 494, 11–18 (2016). https://doi.org/10.1080/00150193.2016.1120052

    Article  CAS  Google Scholar 

  38. C. Elissalde, U.C. Chung, A. Artemenko, C. Estournes, R. Costes, M. Pate, J.P. Ganne, S. Waechter, M. Maglione, Stoichiometry and grain boundaries control by spark plasma sintering in Ba0.6Sr0.4TiO3: Mn/MgO composites. J. Am. Ceram. Soc. 95, 3239–3245 (2012). https://doi.org/10.1088/0034-4885/61/9/002

    Article  CAS  Google Scholar 

  39. L. Zhang, H. Hao, S. Zhang, M.T. Lanagan, Z. Yao, Q. Xu, J. Xie, J. Zhou, M. Cao, H. Liu, Defect structure-electrical property relationship in Mn‐doped calcium strontium titanate dielectric ceramics. J. Am. Ceram. Soc. 100, 4638–4648 (2017). https://doi.org/10.1111/jace.14994

    Article  CAS  Google Scholar 

  40. G. Arlt, D. Hennings, G. De With, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619–1625 (1985). https://doi.org/10.1063/1.336051

    Article  CAS  Google Scholar 

  41. D. Ghosh, A. Sakata, J. Carter, P.A. Thomas, H. Han, J.C. Nino, J.L. Jones, Domain wall displacement is the origin of superior permittivity and piezoelectricity in BaTiO3 at intermediate grain sizes. Adv. Funct. Mater. 24, 885–896 (2014). https://doi.org/10.1002/adfm.201301913

    Article  CAS  Google Scholar 

  42. J. Glaum, Y.A. Genenko, H. Kungl, L. Ana Schmitt, T. Granzow, De-aging of Fe-doped lead-zirconate-titanate ceramics by electric field cycling: 180-vs. non-180 domain wall processes. J. Appl. Phys. 112, 034103 (2012). https://doi.org/10.1063/1.4739721

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge IZTECH Centre for Materials Research for the use of XRD and SEM.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MK: has synthesized the samples, done the structural and electrical characterization as well as written the original draft. EE and YA: have done EPR experiments and interpreted the resulting data, reviewed and modified the original draft. UA: has supervised the study and assisted MK in writing. All authors reviewed and commented on the final draft.

Corresponding author

Correspondence to Umut Adem.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2028.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakaya, M., Erdem, E., Akdogan, Y. et al. Effects of different precursors on the aging and electrocaloric properties of Mn-doped Ba0.95Sr0.05TiO3 ceramics. J Mater Sci: Mater Electron 34, 1871 (2023). https://doi.org/10.1007/s10854-023-11297-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11297-7

Navigation